

# **Geotechnical Investigation Report**

115 Halswell Junction Road, Halswell, Christchurch Suburban Estates Limited

Document Number: 18594-RPTGEO-001-A Date: 28 March 2019

Prepared by

Robert Smith

Senior Geotechnical

Engineer BSc PGCert Eng MEngNZ Reviewed by

Ferry Haryono

Principle Geotechnical

Engineer CPEng, CMEngNZ, IntPE(NZ) Approved by

1/4

Damien McGill

**Engineering Manager** 

NZCE (Civil) MEngNZ

Consulting Civil, Structural, Environmental & Geotechnical Engineers

Directors: R.A. Puklowski NZCE (Civil) REA • C.F. Short BBS PG Dip Man • A.R. Wilton BE CMEngNZ CPEng IntPE DipMS • J.M. Whiunui Dip Civil BE (Civil) Hons CMEngNZ CPEng

Cameron Gibson & Wells Limited Nelson Office Level 4, 241 Hardy Street, PO Box 711, Nelson • Tel: +64 3 548 8259 Christchurch Office Level 2, 124 Peterborough Street, PO Box 21441, Edgeware, Christchurch • Tel: +64 3 348 1000 Wanaka Office 4 Helwick St, PO Box 169, Wanaka • Tel: +64 3 443 6209 office@cgwl.co.nz • www.cgwl.co.nz





### Contents

| 1.  | Introduction                               | 3    |
|-----|--------------------------------------------|------|
| 2.  | Scope of Works                             | 3    |
| 3.  | Desktop Study                              | 4    |
| 4.  | Geotechnical Investigation Information     | 7    |
| 5.  | Geotechnical Assessment                    | 9    |
| 6.  | Assessment Against RMA Section 106         | . 13 |
| 7.  | Foundation Recommendations                 | . 14 |
| 8.  | Construction Considerations                | . 14 |
| 9.  | Further Geotechnical Involvement           | . 16 |
| 10. | Statement of Professional Opinion          | . 16 |
| Арр | endix A: Limitations                       | . 17 |
| Арр | endix B: Test Location Plan                | . 18 |
| Арр | endix C: Cone Penetration Test Logs        | . 19 |
| Арр | endix D: Test Pit Logs                     | . 20 |
| Арр | endix E: Nearby Borehole Logs              | . 21 |
| Арр | endix G: Laboratory Results                | . 22 |
| Арр | endix H: Groundwater Monitoring Data       | . 23 |
| Арр | endix I: Liquefaction Analysis Results     | . 24 |
| Арр | endix J: Statement of Professional Opinion | . 25 |



### 1. Introduction

CGW Consulting Engineers have been engaged by Suburban Estates Ltd (Client) to undertake a geotechnical investigation and report for a proposed development at 115 Halswell Junction Road, Halswell. We understand the client is proposing to subdivide the site and ultimately develop it into residential allotments. As part of our geotechnical investigations and reporting, we will assess the liquefaction risk of the site and a correlated MBIE prescribed Technical Category.

CGW geotechnical engineers are extensively involved in the geotechnical analysis and assessment of the neighbouring Country Palms Subdivision towards the south east of the site. We have undertaken an in-depth geotechnical analysis of this neighbouring subdivision and will reference any related information relevant to the current assessed site. The following reports have been referred to in compiling this report.

Soil & Rock Consultants Geotechnical Investigation Report, Proposed Residential Subdivision Country Palms Drive, Halswell; Ref C16073; dated 3 June 2016 Rev A.

Soil & Rock Consultants Geotechnical Investigation Report, Proposed Residential Subdivision 103 Halswell Junction Road, Halswell; Ref C16073.3; dated 19 July 2016 Rev A.

Beca Interpretive Report of Preliminary Geotechnical Investigation – CCC Halswell ODP dated 20 June 2014 Rev 3.

This report has been prepared in accordance with the Ministry of Building, Innovation and Employment (MBIE) document "Revised Guidance on Repairing and Rebuilding Houses Affected by the Canterbury Earthquake Sequence", version 3, dated December 2012, and subsequent updates, hereafter referred to as the MBIE Guidance. Our geotechnical limitations are attached in Appendix A.

### 2. Scope of Works

Our scope of works as per our short form agreement dated 25 February 2019 includes the following:

- Deep investigations including at least six Cone Penetration Tests (CPT) to a target death of 15m below ground level (bgl).
- Three test pit excavations undertaken across the site to interpret the shallow bearing soils to a target depth of 4 m depth.
- Geotechnical analysis of the site specific and nearby information gathered to confirm a more accurate liquefaction hazard and risk for the site.
- Assessment against RMA Section 106/ Building Act 2004 Section 71.



- Statement of Professional Opinion.
- Compile this geotechnical investigation report providing guidance on the liquefaction risk and any geological aspects that may need to be considered for the development of the site.

### 3. Desktop Study

#### 3.1 Site Description

The site, located off 115 Halswell Junction Road, Halswell, Christchurch, is situated approximately 8.5km south-west of Central Christchurch and is legally described as Lot 2 DP 23163 covering a total area of 2.1 hectares. Access to the site is via Halswell Junction Road.

The site is bound to the north by a residential property, to the east by Country Palms Subdivision and to the south and west by farmland. The site is currently categorised by the Canterbury Earthquake Recovery Authority (CERA) as Rural & Unmapped. The Beca Geotechnical Investigation Report assessed the site as consistent with a Technical Category TC3 classification (R15 area).

The adjacent Country Palms subdivision is classified as being consistent with Technical Category 2 (TC2) land.



Figure 1: Site Location (Taken from Google Earth Imagery)



### 3.2 MBIE Technical Category

The site is located within a classified MBIE N/A – Urban Non-Residential area (Brown). MBIE designated Technical Category TC3 (Blue) land is located approximately 300m north and west of the site. As mentioned the site is bordering the recently developed Country Palms subdivision which was assessed as being consistent with a Technical Category TC2 area (Yellow).

#### **3.3 EQC Land Damage Information**

The NZGD information for the site indicates no land damage occurred at the site following the 22 February 2011 earthquake which was the only earthquake event of the Christchurch Earthquake Sequence (CES) mapped.

#### 3.4 Vertical Land Movement

Cumulative vertical ground settlement (excluding tectonic movement) approximated via LiDAR surveys undertaken by EQC following all recent significant earthquake sequences indicates the site has undergone approximately 200mm of vertical settlement in the north-west portion of the site with an average of approximately 100mm of vertical settlement across the site. The vertical deformation data provided by the EQC is based on LiDAR observations, which are considered approximate only, with a likely error of +/- 0.1m.

#### 3.5 Horizontal Land Movement

LiDAR survey data indicates cumulative local horizontal movement (excluding tectonic movement) of the site and surrounding area for all events of approximately 200mm to the north-west. The site is not located within an area considered susceptible to major global lateral movement (Tables 12.2, MBIE Guidelines). The horizontal deformation data provided by the EQC is based on LiDAR observations, which are considered approximate only, with a likely error of +/- 0.4m.

#### 3.6 Scaled Conditional Peak Ground Acceleration

Conditional Peak Ground Acceleration (PGA) values, developed by Bradley Seismic Ltd and the University of Canterbury, are available on the NZGD. These values have been scaled (Table 1) to match a design earthquake moment magnitude (Mw) of 7.5 in accordance with Idriss/Boulanger (2008/2014), as recommended by Bradley and Hughes (2012).



| Table 1 - Sca            | Table 1 - Scaled Conditional PGA Values for the Site |                    |                            |                       |                                                      |                        |  |  |  |
|--------------------------|------------------------------------------------------|--------------------|----------------------------|-----------------------|------------------------------------------------------|------------------------|--|--|--|
| Earthquake<br>Event      | Moment<br>Magnitude<br>(M <sub>w</sub> )             | Average<br>PGA (g) | Standard<br>Deviation<br>σ | PGA<br>M =<br>7.5 (g) | 10 <sup>th</sup><br>Percentile<br>PGA M =<br>7.5 (g) | Sufficiently<br>tested |  |  |  |
| 4th<br>September<br>2010 | 7.1                                                  | 0.30               | 0.39                       | 0.27                  | 0.16                                                 | Yes                    |  |  |  |
| 22nd<br>February<br>2011 | 6.2                                                  | 0.35               | 0.42                       | 0.25                  | 0.14                                                 | Yes                    |  |  |  |
| 13th June<br>2011        | 6.0                                                  | 0.14               | 0.46                       | 0.09                  | 0.05                                                 | No                     |  |  |  |
| 23rd<br>December<br>2011 | 5.9                                                  | 0.13               | 0.37                       | 0.09                  | 0.05                                                 | No                     |  |  |  |

#### 3.7 Site Performance

Using guidance from the MBIE and Bradley & Hughes (2012) 'Conditional Peak Ground Accelerations in the Canterbury Earthquakes for Conventional Liquefaction Assessment', we consider the site was "sufficiently tested" to a Serviceability Limit State SLS Level of earthquake demand during the 4 September 2010 and 22nd February 2011 earthquake events of the CES.

#### 3.8 Published Geology

The soils across the Canterbury Plains comprise interbedded alluvial formations deposited by eastward flowing rivers emanating from the Southern Alps and draining towards the coast along Pegasus Bay. These alluvial soils, interlayered with marine deposits associated with previous fluctuations of sea level, comprise variable gravels, sand, silts and occasional peat, and can change markedly over relatively short distances, both horizontally and vertically. The sandy and silty soil types are considered susceptible to liquefaction, dependent upon grain size distribution, saturation and in-situ density.

The 1:25,000 scale geological map 'Geology of the Christchurch Urban Area' (Brown and Weeber, 1992), indicates the near surface geology at the site is the Christchurch Formation. The Christchurch Formation is described as typically up to 40 m thick, less than 10,000 years in age, and comprises marine beach and dune sands.

In this area the Christchurch Formation is likely to be underlain by the Riccarton Gravel. The Riccarton Gravel is described as typically 20 m thick, between 14,000



and 70,000 years in age, and comprises alluvial gravels with sand and silt deposited by rivers on outwash fans during the most recent glacial period. This formation is the upper most confined gravel aquifer in Canterbury.

#### 3.9 Site Subsoil Classification

We consider that the site subsoil category in terms of NZS 1170.5 Clause 3.1.3 is Class D (deep or soft soil sites) based on the following:

• Forsyth et al (2008) indicates that rock in this area of Christchurch is likely to be in the order of several hundred metres.

• Investigations indicate approximately 20 m of interbedded silt, sand and clay, which is likely overlying predominately gravels to at least 200 m depth.

• Clause 3.1.3 and Table 3.2 of NZS 1170.5:2004

### 4. Geotechnical Investigation Information

In this section we will present both our site specific investigation information as well as nearby information.

#### 4.1 Site Specific Investigations

We have undertaken six CPTs to a target depth of 15m and three test pit excavations to a target depth of 4m below ground level (bgl). The site specific testing is summarised in Table 2.

We have also relied upon the neighbouring geotechnical investigation information for 43 Country Palms Drive & 103 Halswell Junction Road where we have previously completed a comprehensive liquefaction back-analysis and sensitivity analysis for the Country Palms subdivision. We will refer to the available Cone Penetration Tests (CPT), Machine Boreholes (MB), Laboratory testing and piezometer monitoring of groundwater levels to supplement our site specific investigations.

A visual-tactile field classification of the subsoils encountered during machine drilling was carried out in accordance with 'Guidelines for the Field Classification and Description of Soil and Rock for Engineering Purposes' (NZGS, 2005). All test locations are presented on drawing 18594/1 in Appendix B. The test locations for each test was recorded by handheld GPS and reduced levels interpolated from LiDAR and are therefore approximate only.

CPT results showing cone resistance and soil behaviour type presented in Appendix C, Test Pit logs presented in Appendix D, nearby borehole logs presented in Appendix E and the associated laboratory test results presented in Appendix G.



| Table 2: S | Table 2: Site Specific Investigation Information |                           |                                                        |  |  |  |  |  |  |  |
|------------|--------------------------------------------------|---------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|
| Test No.   | Elevation (RL)                                   | Termination Depth (m) bgl | Further Information<br>(Groundwater, piezometer, etc.) |  |  |  |  |  |  |  |
| TP01       | 13.6                                             | 3.9                       | No groundwater encountered                             |  |  |  |  |  |  |  |
| TP02       | 14.1                                             | 3.9                       | No groundwater encountered                             |  |  |  |  |  |  |  |
| TP03       | 14.7                                             | 4.0                       | No groundwater encountered                             |  |  |  |  |  |  |  |
| CPT01      | 14.0                                             | 9.67                      | Groundwater not measured                               |  |  |  |  |  |  |  |
| CPT02      | 14.0                                             | 7.57                      | Groundwater measured at 1.4m                           |  |  |  |  |  |  |  |
| CPT03      | 14.0                                             | 10                        | Groundwater measured at 1.8m                           |  |  |  |  |  |  |  |
| CPT04      | 14.0                                             | 6.9                       | Groundwater measured at 0.9m                           |  |  |  |  |  |  |  |
| CPT05      | 14.0                                             | 7.51                      | Groundwater measured at 1.1m                           |  |  |  |  |  |  |  |
| CPT06      | 14.0                                             | 9.37                      | Groundwater measured at 0.9m                           |  |  |  |  |  |  |  |

#### 4.2 Nearby Investigations Referenced

We have referred to the nearby machine borehole (MB01) which was undertaken within the 103 Halswell Junction Road property as part of the Country Palms Subdivision investigations. We have also referred to the laboratory testing information which was undertaken on predetermined layers of soil that exhibited a propensity to being susceptible to seismically induced liquefaction.

The machine borehole logs are presented in Appendix E and the test location is given in the test location plan in Appendix B.

A site ground model has been tabulated below in Table 3, summarising the site specific testing data encountered.

### 4.3 Site Ground Model

| Table 3: Ground Model                                                          |                                    |                           |                                   |  |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------|---------------------------|-----------------------------------|--|--|--|--|
| Soil Type                                                                      | Depth to<br>bottom of<br>layer (m) | Layer<br>Thickness<br>(m) | Relative Density /<br>Consistency |  |  |  |  |
| SILT (Topsoil/Fill)                                                            | 0.1-0.4                            | 0.1-0.4                   | Firm to Stiff                     |  |  |  |  |
| Sandy SILT interbedded with SILT and SAND, fine, minor silt, greyish brown     | 5.5 – 9.6                          | 4.2 – 11.2                | Loose to Medium Dense             |  |  |  |  |
| Sandy GRAVEL, well graded, light<br>brownish grey, subangular to<br>subrounded | 5.5+ - 9.6+                        | Not<br>Confirmed          | Dense to Very dense               |  |  |  |  |



#### 4.4 Laboratory Test Results

The majority of the soils tested comprised silt with fine soils inferred to be fine grained sand ranging in percentage of the total sample tested of between 58% and 98%. The laboratory results are presented in Appendix F.

| Table 4: I                  | Table 4: Laboratory Test Results |                            |      |      |                          |        |     |    |     |     |  |
|-----------------------------|----------------------------------|----------------------------|------|------|--------------------------|--------|-----|----|-----|-----|--|
|                             |                                  | Particle Size Distribution |      |      |                          |        |     |    |     |     |  |
| Test                        | Depth                            | Fin                        | es   |      | Sand                     |        |     | PL | PI  | usc |  |
| No.                         | (m)                              | Clay                       | Silt | Fine | ne   Medium   Coarse   🍼 | Gravel | r L | F1 | 030 |     |  |
|                             |                                  | (%)                        | (%)  | (%)  | (%)                      | (%)    | (%) |    |     |     |  |
| MB01<br>(103                | 2.2 –<br>2.5                     | 0                          | 58   | 41   | 1                        | 0      | 0   | NP | NP  | ML  |  |
| Halswell<br>Junction<br>Rd) | 3.2 –<br>3.5                     | 0                          | 63   | 37   | 0                        | 0      | 0   | NP | NP  | ML  |  |
|                             | 8.2 –<br>8.5                     | 11                         | 87   | 2    | 0                        | 0      | 0   | 26 | 5   | ML  |  |

#### 4.5 Groundwater

Groundwater was recorded between at 0.9m and 1.4m bgl within the CPT tests, however, standing groundwater was not encountered within the test pit excavations which extended to 4m depth. Groundwater measurements from the piezometer installed within machine borehole MB01, indicated a depth to groundwater of 2.85m bgl. (See Appendix H for the piezometer logs and a summary of the piezometer readings).

### 5. Geotechnical Assessment

#### 5.1 Liquefaction Analysis Methodology

As mentioned, we have relied on the nearby geotechnical investigation information including laboratory testing and back analysis of similar soils in order to better quantify the liquefaction risk of the site. The geotechnical investigation and analysis for the Country Palms Subdivision undertook a comprehensive liquefaction back-analysis and sensitivity analysis of the neighbouring site (43 Country Palms Drive & 103 Halswell Junction Road). The methodology included an initial liquefaction analysis of the CPT results using the standard CPT based liquefaction analyses using the CLiq software (v1.7.6.49) and Boulanger & Idriss (2014) for liquefaction induced ground subsidence, as prescribed by MBIE. From this initial analysis the CPTs exhibiting the greatest liquefaction induced settlement were identified and a machine borehole was drilled in close proximity to these identified CPTs. From the



initial liquefaction analysis, identified specific liquefiable layers that exhibited a possibility of fines (silt) being present were sampled within the boreholes and sent to a laboratory for specific testing of the fines content within the sampled soils. These are summarised and tabulated below.

### 5.2 Laboratory Results and Probability Consideration Analysis

The laboratory results (Table 4), indicate a 'fines content' of between 48% to 60% from a depth of between 2.0m to 4.0m bgl and up to 100% at a depth of between 4.5m to 5m and 8.2m to 8.5m bgl.

| Table 5: Average Fines Content based on CPT07/11 Interpretations |            |                   |           |  |  |  |  |
|------------------------------------------------------------------|------------|-------------------|-----------|--|--|--|--|
| Fitting Parameter                                                |            | Fines content (%) |           |  |  |  |  |
| C <sub>FC</sub>                                                  | 2.0 – 2.5m | 3.0 – 3.5m        | 8.0 – 10m |  |  |  |  |
| 0.00                                                             | 20         | 30                | 30        |  |  |  |  |
| 0.07                                                             | 25         | 35                | 40        |  |  |  |  |
| 0.29                                                             | 45         | 55                | 80        |  |  |  |  |

According to B&I 2014, it suggests that the behaviour soil type index (Ic) can be calibrated as follows:

$$I_C = \frac{(FC + 137)}{80} - C_{FC}$$

Where: FC = fines content

C<sub>FC</sub> = fitting parameter

Therefore, we consider the fitting parameter ( $C_{FC}$  of 0.29) and an Ic value of 2.4 are considered appropriate for this site as they correlate well with the laboratory testing fines contents for the specific liquefiable layers assessed.

In addition, we also consider that the higher threshold probability of liquefaction  $P_L$  of 50% is appropriate due to the site being 'well tested' and in-line with nearby topography survey measurements which was considered in the back analysis.

Assessment of liquefaction potential has been undertaken using CPT001 to CPT006 to determine possible ground subsidence at the site during future design seismic events. Acceleration values for Design Level events and liquefaction analysis methodologies are taken from the MBIE Guidelines and MBIE October 2014 clarifications.

Liquefaction analyses have considered the following Serviceability Limit State (SLS) (1:25 year return period) and Ultimate Limit State (ULS) (1:500 year return period) Design Levels:



- SLS1 Mw 7.5, PGA 0.13g;
- SLS2 (sensitivity analysis at SLS) Mw 6.0, PGA 0.19g; and
- ULS Mw 7.5, PGA 0.35g.

CPT based liquefaction analyses were undertaken in CLiq software (v2.2.0.28) using Boulanger & Idriss (2014) for liquefaction triggering and fines correction, and Zhang et al (2002) for post liquefaction induced ground subsidence.

A conservative groundwater level of 2.0 m has been used for in-situ conditions and 2.0 m for the Design Level events for the analyses. Analysis outputs are presented in Appendix I.

### 5.3 Liquefaction Induced Settlement

| Table 6: CPT based Liquefaction Analysis Results for Design Events |                                                |               |           |                               |      |     |  |  |  |
|--------------------------------------------------------------------|------------------------------------------------|---------------|-----------|-------------------------------|------|-----|--|--|--|
| Test No.                                                           | Predicted Liquefaction Induced Settlement (mm) |               |           |                               |      |     |  |  |  |
| (Termination<br>Depth)                                             | Limited                                        | to 10 m (Inde | ex Value) | Full Depth of Testing (Depth) |      |     |  |  |  |
|                                                                    | SLS1                                           | SLS2          | ULS       | SLS1                          | SLS2 | ULS |  |  |  |
| CPT001                                                             | <5                                             | <5            | 25        | <5                            | <5   | 25  |  |  |  |
| CPT002                                                             | <5                                             | <5            | 45        | <5                            | <5   | 45  |  |  |  |
| CPT03                                                              | <5                                             | 20            | 54        | <5                            | 20   | 54  |  |  |  |
| CPT04                                                              | <5                                             | <5            | 35        | <5                            | <5   | 35  |  |  |  |
| CPT05                                                              | <5                                             | <5            | 40        | <5                            | <5   | 40  |  |  |  |
| CPT06                                                              | <5                                             | <5            | 45        | <5                            | <5   | 45  |  |  |  |

#### 5.4 Lateral Displacement

#### 5.4.1 Global Lateral Movement

The site is not located within an area of known major global lateral ground movement (Table 12.2, MBIE December 2012 Guidelines) and no evidence of major global lateral movement was noted on the site or within the surrounding area. Therefore, we consider the site should be designated as 'minor to moderate' for global lateral movement (i.e. <300mm at ULS levels of shaking) in accordance with the MBIE Guidelines.



### 5.4.2 Lateral Stretch

Based on the previous performance of the site, and it's location, we consider the site should be designated as minor for lateral stretch (i.e. <50mm at ULS levels of shaking) in accordance with the MBIE Guidelines.

### 5.4.3 Expected Future Land Performance

The MBIE Guidelines provide broad classification of land for future land performance based on index values of expected settlements. Calculation of index values has been limited to the upper 10m of the soil profile as specified in the MBIE Guidelines, and the expected future land performance Technical Category, based on average values obtained, is shown below in Table 7 with a summary of the liquefaction analysis presented in Appendix I.

| Table 7. Expected Future Land Performance Categories |              |     |              |   |                     |      |                 |   |  |
|------------------------------------------------------|--------------|-----|--------------|---|---------------------|------|-----------------|---|--|
| Technical                                            | Expected SLS |     | Expected ULS |   | Expected ULS Global |      | Expected ULS    |   |  |
| Category                                             | Land         |     | Land         |   | Lateral Movement    | (mm) | Lateral Stretch |   |  |
|                                                      | Settleme     | ent | Settlement   |   |                     |      | (mm)            |   |  |
|                                                      | (mm)         |     | (mm)         |   |                     |      |                 |   |  |
| TC1                                                  | 0 - 15       |     | 0 – 25       |   | Nil                 |      | Nil             |   |  |
| TC2                                                  | 0 -50        |     | 0 – 100      |   | <300 (Minor to      |      | <50 (Minor)     |   |  |
|                                                      |              | 1   |              | ~ | Moderate            | ~    |                 | ~ |  |
| TC3                                                  | >50          |     | >100         |   | 300 – 500           |      | 0 – 200         |   |  |
|                                                      |              |     |              |   | (Major)             |      | (Minor to       |   |  |
|                                                      |              |     |              |   |                     |      | Moderate)       |   |  |
|                                                      |              |     |              |   |                     |      | Or              |   |  |
|                                                      |              |     |              |   |                     |      | 200-500         |   |  |
|                                                      |              |     |              |   |                     |      | (Major)         |   |  |
|                                                      |              |     |              |   |                     |      |                 |   |  |

Table 7: Expected Future Land Performance Categories

Our liquefaction and lateral spreading assessment and analysis indicates that liquefaction-induced ground subsidence is consistent with a current Technical Category TC2 land performance designation. Similarly LSN values and corresponding damage classifications obtained for the site reflect TC2 land performance at SLS and ULS levels of shaking.



### 6. Assessment Against RMA Section 106

Section 106 of the Resource Management Act (RMA) states "... a consent authority may refuse to grant a subdivision consent, or may grant a subdivision consent subject to conditions, if it considers that:

a) the land in respect of which a consent is sought, or any structure on the land, is or is likely to be subject to material damage by erosion, falling debris, subsidence, slippage, or inundation from any source; or

b) any subsequent use that is likely to be made of the land is likely to accelerate, worsen, or result in material damage to the land, other land, or structure by erosion, falling debris, subsidence, slippage, or inundation from any source; or

c) sufficient provision has not been made for legal and physical access to each allotment to be created by the subdivision."

No erosion was observed on the site, however there is the potential for erosion to occur if the soils are left sparse of vegetation and exposed. The site is unlikely to be susceptible to falling debris or slippage due to its topography and the surrounding ground.

Due to the potential for seismically induced liquefaction, the site is currently susceptible to varying degrees of subsidence and inundation from liquefaction. However, if the appropriate liquefaction mitigation measures are undertaken the risk of subsidence and inundation from liquefaction is significantly reduced. With the appropriate liquefaction mitigation measures in place the risk of "subsidence" will be minimised. The proposed subdivision development therefore generally complies with the intent of Section 106 (a).

Due to the presence of fine grained soils at the site, the potential for erosion and rilling is present if soils are exposed to weathering for prolonged periods, Forms of weathering may include wind, precipitation and inadequately discharged stormwater runoff. The susceptibility of soils to erosion can be minimised by undertaking appropriate industry standard design measures during construction. The site has been identified as being susceptible to seismically induced liquefaction and therefore has the potential for "subsidence", "and "inundation." Provided that appropriate liquefaction measures are implemented, subsequent use of the land following development is unlikely to accelerate, worsen, or result in material damage to the land, other land, or structures. In our opinion therefore, the development will comply with the intent of section 106 (b).

Section 106 (c) is not directly relevant to a geotechnical appraisal and therefore has not been considered in detail in this report.



Thus in our opinion, under Section 106 of the RMA, there are no geotechnical reasons preventing the development, provided the developer takes the appropriate measures as recommended in this report and follows appropriate industry standards for erosion control.

### 7. Foundation Recommendations

We consider new dwelling foundations should comprise TC2 type foundations as given within Section A of the MBIE guidelines. For the given site, we consider 'Options 2 or 4' (enhanced foundation slab) are both suitable for the support of concrete flooring.

### 8. **Construction Considerations**

#### 8.1 Site Formation Works

All earthworks should be carried out to the requirements of NZS 4431:1989, 'Code of Practice for Earthfilling for Residential Development'. All unsuitable materials (vegetation, organic or deleterious material, topsoil and non-engineered fill etc.) should be stripped from any areas of earthworks and stockpiled well clear of earthwork operations or carted from the site. Compaction of non-cohesive fill should be carried out using pad foot compaction plant of a minimum 10tonne static weight, in loose layers no greater than 200mm thickness. All fill materials should be clear of unsuitable materials as described above.

Prior to commencing earthworks, a sediment control system should be constructed to ensure Council requirements are met.

#### 8.2 Excavations and Dewatering

Temporary excavation sidewalls should be battered no steeper than 1V:1H and where this cannot be safely achieved due to proximity to site boundaries then temporary retaining will be required.

We recommend construction be undertaken during the drier summer months and that groundwater levels be investigated just prior to excavations to determine whether dewatering or a drainage blanket is required. Site wide dewatering may be required if measured groundwater levels are within or close to depths of excavation. Isolated sumps and pumps may provide a sufficiently dry excavation base which to work from, however well points or more extensive dewatering may be required dependent on the groundwater depth at the time of excavation. If significant groundwater inflow is experienced into the excavation a 200mm thick drainage blanket of geotextile (Terratex 180N or equivalent) wrapped railway ballast may need to be installed in the base of the excavation to provide a free-draining platform from which to conduct fill placement and compaction.



Dewatering and excavation side-wall retention are the responsibility of the contractor.

#### 8.3 Local Soft / Organic Ground

Soft soils or those rich in organic matter should be treated as unsuitable. If encountered during excavations these materials should be placed in a designated unsuitable stockpile for removal and disposal off site.

#### 8.4 Fill and Backfill

We consider engineered fill should be placed on a suitable subgrade in layers not exceeding 200mm thickness and each layer compacted to achieve a Maximum Dry Density Ratio of at least 95%. A geotechnical engineer should be engaged to assist in assessing suitable subgrade and excavations.

#### 8.5 Stormwater Control

Concentrated stormwater flows from all impermeable areas must be collected and carried in sealed pipes to the Council system. Uncontrolled stormwater must not be allowed to saturate the ground as this will potentially affect foundation performance both statically and during future seismic activity (liquefaction potential and liquefaction induced settlement are both increased with a higher groundwater table which can result from uncontrolled disposal of stormwater).

#### 8.6 Pavement Areas

Vegetation, any organic or deleterious material, topsoil and non-engineered fill should be removed from the site under pavement areas prior to aggregate placement. Based on our observations during testing we consider the natural ground at the site should provide an adequate subgrade for the proposed pavement areas. We recommend for preliminary design a CBR value of 3% or a modulus of subgrade reaction of 20kPa/mm, for flexible or rigid pavements respectively.

The thickness of the basecourse would depend on the final CBR/modulus of subgrade reaction used for the subgrade and the traffic loads anticipated. The compaction of the basecourse should be carried out with a vibratory roller of appropriate static weight and energy.

#### 8.7 Underground Services

Flexible connections should be constructed where all service drains and ducts enter/exit either concrete floor slabs or areas of ground improvement. Service trench backfill should comprise well graded crushed stone aggregate (i.e. GAP 65) treated with 3% cement by weight.



The contractor is responsible for ascertaining whether any major services are present within the site. This should be confirmed prior to any earth-working.

### 9. Further Geotechnical Involvement

#### 9.1 Geotechnical Drawing Review

A geotechnical engineer familiar with the findings of this report should be engaged to review the final working drawings of the proposed development prior to submission to the Building Consent Authority, to ensure the geotechnical recommendations of this report have been implemented correctly. Further geotechnical analysis may be warranted at this stage subject to the specifics of the development proposal.

#### 9.2 **Construction Observations**

A Geotechnical Engineer familiar with the findings of this report should be engaged to carry out observations during foundation excavations to confirm soil and foundation conditions are consistent with those adopted within this report. Inspections will not be carried out prior to Council issuing the required Resource and/or Building Consents, and unconsented works will not be inspected.

The recommendations given in this report are based on limited site data from discrete locations. Variations in ground conditions could exist across the site. It is in the interests of all parties that we be retained to observe excavations and foundation conditions exposed during construction, so that ground conditions can be compared with those assumed in formulating this report. In any event, we should be notified of any variations in ground conditions from those described or assumed to exist.

Without sufficient observations during the subgrade preparation prior to placement of fill or concrete, CGW Consulting Engineers will not be in a position to provide engineering signoff (i.e. Earthworks Completion Report, Professional Opinion or Producer Statement PS4). We recommend once a Resource and/or Building Consent be issued it be forwarded to us for review. We will then on-forward a schedule of inspections required by us in order to meet the consent conditions. Areas where concrete or fill are placed without prior geotechnical observation will be specifically excluded from completion documentation.

### 10. Statement of Professional Opinion

A statement of professional opinion with regards to the proposed development is provided in Appendix J.



## **Appendix A: Limitations**

#### CGW CONSULTING ENGINEERS - LIMITATIONS

The professional services and this document provided by CGW Consulting Engineers Ltd ("CGW") are subject to the following limitations:

**Reliance:** This document has been prepared solely for the benefit of our client, as per our brief and an agreed consultancy agreement. The document is confidential and reliance by any other parties on the information or opinions contained in this document shall, without our prior agreement in writing, be at such parties' sole risk. CGW accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this document.

**Our Brief:** This document has been prepared solely to address the issues raised in our brief, and shall not be relied on for any other purpose. The scope and the period of CGW's services are as described in CGW's proposal, and are subject to restrictions and limitations. CGW did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by CGW in regards to it.

Unforeseen Ground Conditions: The conclusions and recommendations contained within this document are based on the ground conditions indicated from published sources, site inspections and subsurface investigations described in this document based on accepted normal methods of site investigation. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the Client's brief and this document does not purport to completely describe all the site characteristics and properties. The nature and continuity of ground and groundwater conditions are inferred using experience and judgement and it must be appreciated that actual conditions could vary considerably from the assumed model. Defects and unforeseen ground conditions may remain undetected which might adversely affect the stability of the site and the recommendations made herein.

Third Party Data: In the event that external third party investigation data has been utilised or provided to us, the client acknowledges that we have placed reliance on this information to produce our document and CGW will accept no liability resulting from any errors or defect in the external third party data.

Ground Investigation Data: The Client grants permission to CGW to upload any factual data collected during the works to the National Geotechnical Database (or other similar database) as appropriate.

Warranty: Any assessments made in this document are based on the conditions indicated from published sources and the investigations described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this document.

**Time:** In addition, it is recognised that the passage of time affects the information and assessment provided in this document. CGW's opinions are based upon information that existed at the time of the production of the document. It is understood that the services provided allowed CGW to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality or features of the site, or its surroundings, or any laws or guidance or regulations.

**Construction Issues:** It is common that not all site issues will necessarily be dealt with at site assessment stage. As the project progresses through design towards construction, if issues arise, allow CGW to develop alternative solutions to problems, that will be of benefit both in time and cost. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. Contractors should perform any additional tests as necessary for their own purposes.

Geoenvironmental: Unless specifically stated the document will not relate any findings, conclusions or recommendations about the potential for hazardous or contaminated materials existing at the site. Specialist equipment, techniques, laboratory testing and personnel are required to perform geoenvironmental (ie. HAIL) assessments.

Sub-Contractors and Staff: CGW may have retained sub-consultants or sub-contractors to provide services for the benefit of CGW. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, CGW's sub-consultant or sub-contractor companies, and CGW's employees, officers and directors.

**Copyright:** This document is not to be reproduced either wholly or in part without our prior written permission. The document should not be altered in any way. Logs, figures, designs and drawings are included in our documents. These inclusions, logs etc., should not under any circumstances be redrawn for inclusion in other documents or separated from the source document in any way.

**Intellectual Property Rights:** All intellectual property (IP), designs and documents created or provided by CGW in the provision of the services shall remain the property of CGW. Subject to the Client complying with its obligations under the agreed consultancy agreement, the Client shall upon payment own all deliverables provided to it in the provision of the Services, and CGW grants to the Client a nonexclusive, non-transferable license to use the IP for the purposes described in the Proposal. The Client shall not use, or make copies of, the deliverables in connection with any work not included in the Proposal without prior written consent from CGW. If the Client is in breach of any obligation to make a payment to CGW, then CGW may revoke the license to use the IP and the Client shall return to CGW all originals of deliverables provided under the services and any copies thereof.

Assignment: Neither party and their respective successors may assign, transfer, or sublet any obligation under this Agreement without the prior written consent of the other party. Unless stated in writing to the contrary, no assignment, transfer, novation or sublet shall release the assignor from any obligation under this Agreement.

Standard Terms: These Limitations should be read in conjunction with the IPENZ/ACENZ Standard Terms of Engagement as per our proposal and agreed consultancy agreement.

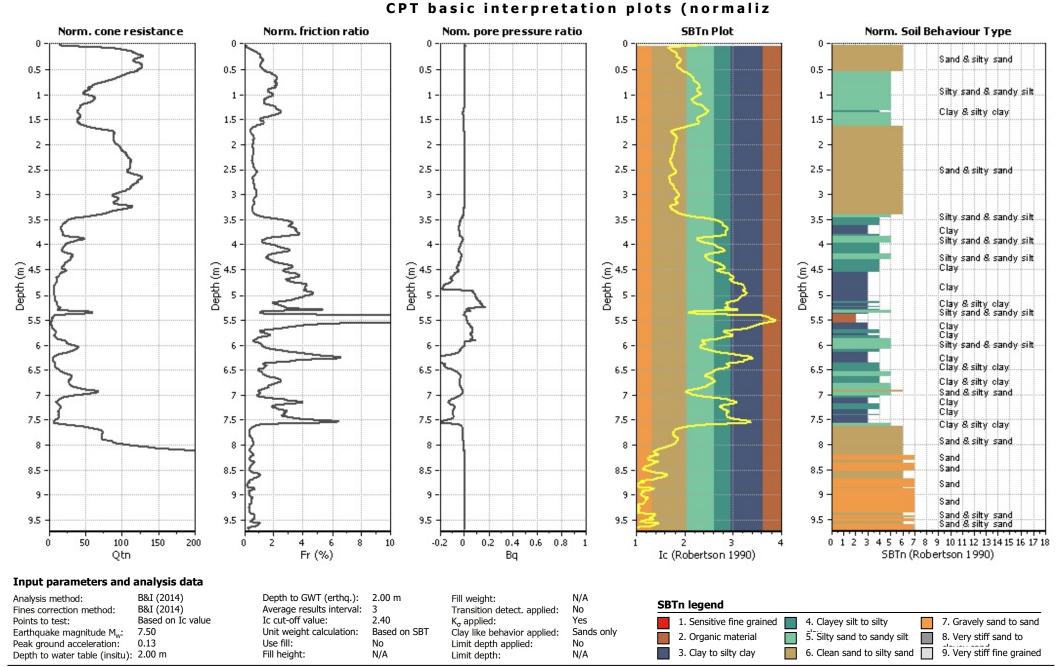


## **Appendix B: Test Location Plan**

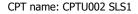


#### Notes:

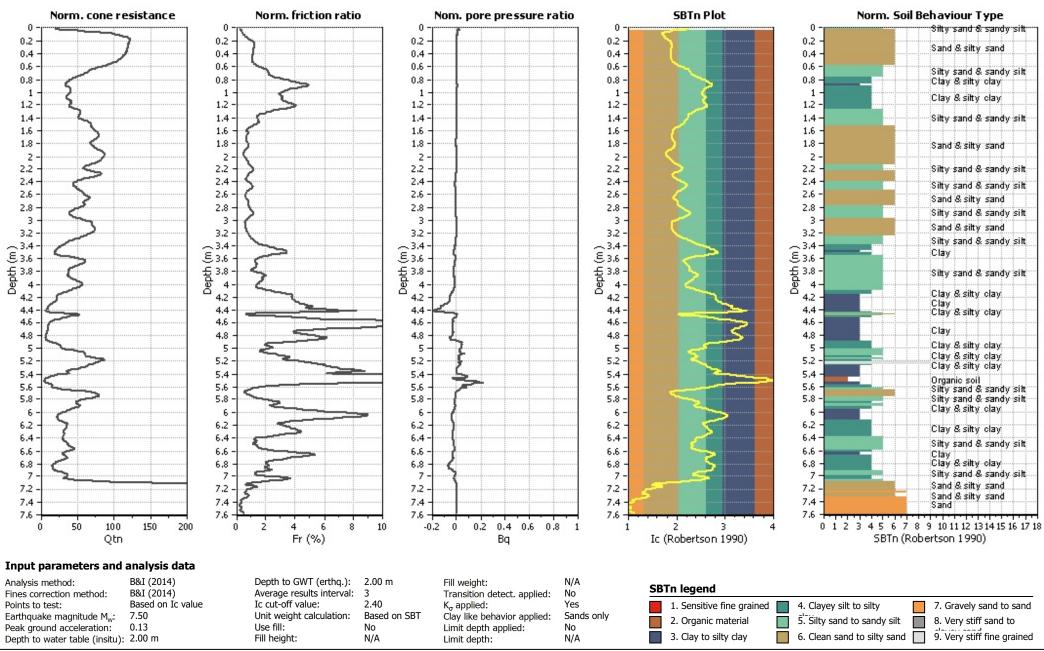
 CGW Consulting Engineers Test Location Plan adapted from Ecan or Google maps.
 It should be borne in mind that locations of


features are approximate only.

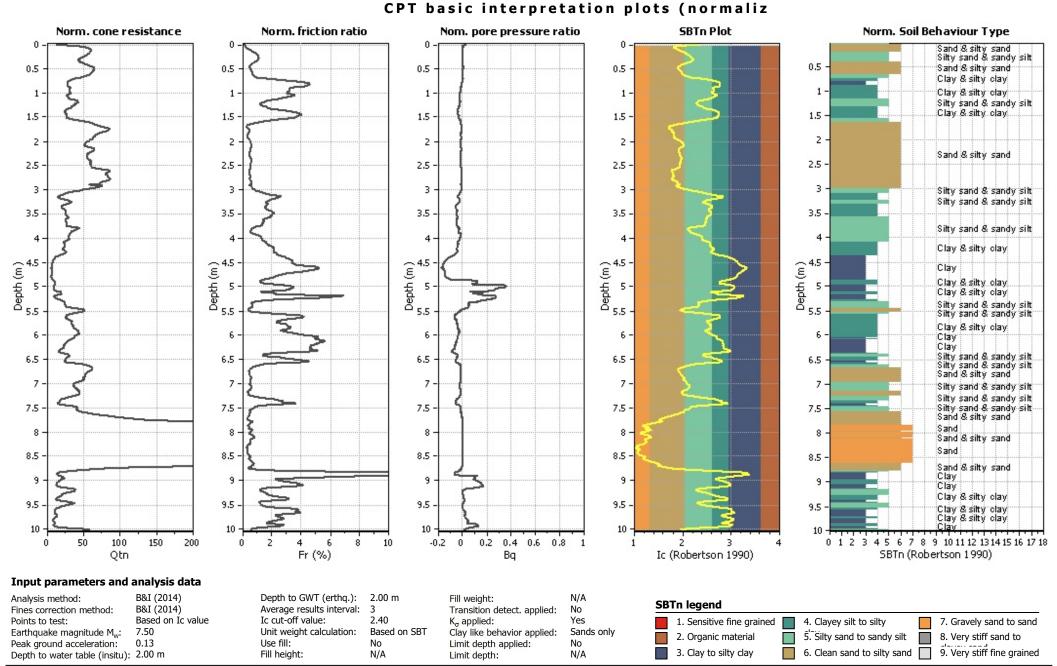
3. Original plan size A4.


|                 | Civil Structural Environmental | DATE:    | March 2019 | Test Location Plan         | DRAWING NO:  |
|-----------------|--------------------------------|----------|------------|----------------------------|--------------|
|                 | Geotechnical                   | DRAWN:   | JF         | 115 Halswell Junction Road | 18594/1      |
|                 | Nelson Ph: 548 - 8259          | SCALE:   | NTS        | Halswell                   | 10394/1      |
| Consulting Engi | Christchurch Ph: 348 - 1000    | CAD REF: | 18594      | Christchurch               | SHEET 1 OF 1 |



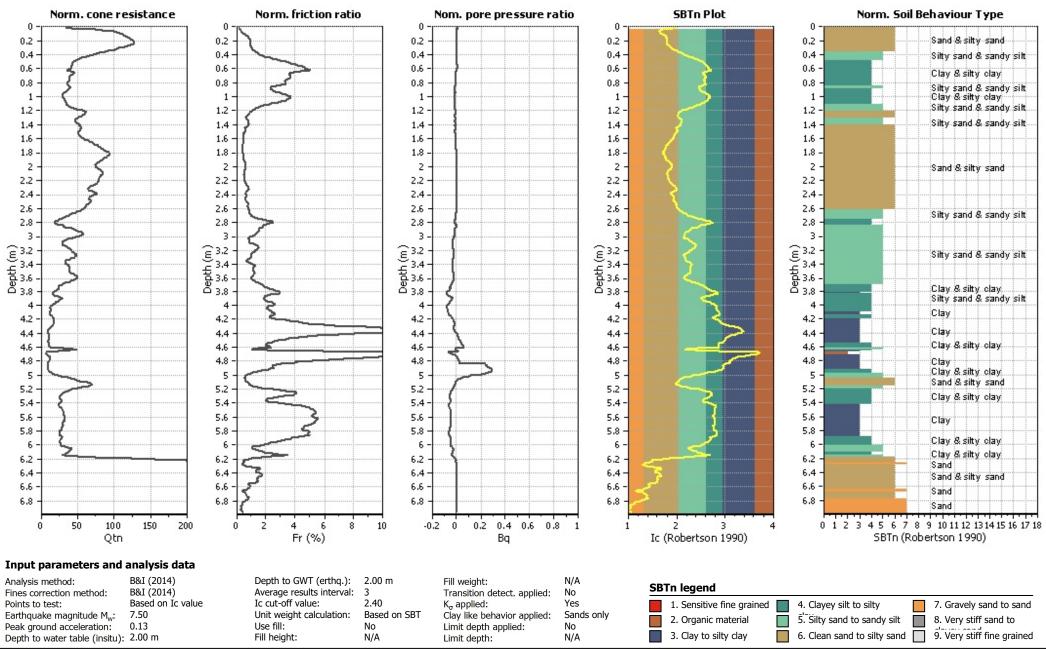

**Appendix C: Cone Penetration Test Logs** 



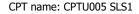

CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:57:09 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



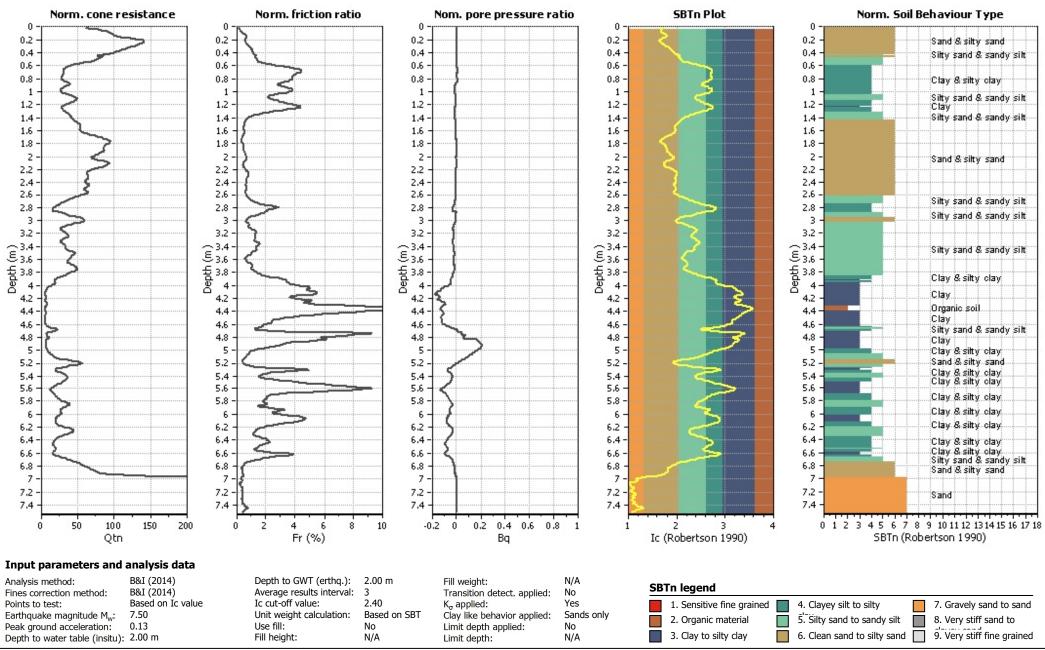
#### CPT basic interpretation plots (normaliz



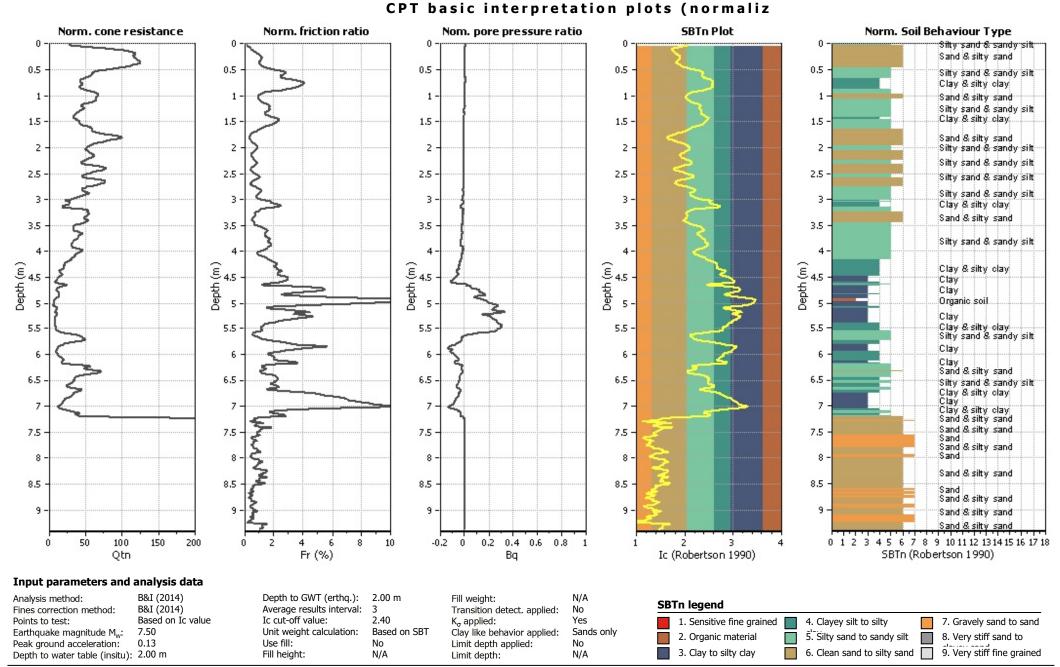

CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:24:28 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:27:35 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq


#### CPT basic interpretation plots (normaliz




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:29:35 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



#### CPT basic interpretation plots (normaliz



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:42:04 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:44:19 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



## Appendix D: Test Pit Logs

|                      | Project Title: 115 Halswell Junctio             | n Road, Halswell, Christchurch                                                                                                                                                                                                                                                                                                   | TDOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|----------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CGW                  | Project Number: 18594                           | Client: Suburban Estates Ltd                                                                                                                                                                                                                                                                                                     | TP01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Consulting Engineers | GL (mAOD): 13.60                                | N Coord: -43.583847                                                                                                                                                                                                                                                                                                              | E Coord: 172.558536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Date: 19/03/2019     | Method: Digger                                  | Logged By: JF                                                                                                                                                                                                                                                                                                                    | Scale: 1:25 Sheet 1 Of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                      | i) (Stockwell) Level Legend De<br>0 300 400     | epth (m) Description                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water |
|                      |                                                 | dark brown. Firm, dry,       0.40       SILT, trace fine to morange-brown. Firm,       0.40       0.40       Weed Mat or Get       0.50       Becomes with no       0.90       Becomes brown       grey.       Moderately plass       1.30       Becomes with so       Sandy SILT; brown more soft to firm, moist, lo       2.00 | ocloth<br>e sand.<br>In mottled orange-brown and<br>stic.<br>Ime fine to medium sand.<br>Inteled orange-brown and grey.<br>Inteled orange brown and grey.<br>Intel down and grey an |       |
|                      | Z - Groundwater Strike<br>Z - Groundwater Level | REMARKS<br>No Groundwater Encounte<br>End of Hole at 3.8 m.<br>Target Depth Reached.                                                                                                                                                                                                                                             | ered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |

|                      | Project Title: 115 Halswell Junc            | tion Road, Halswell, Christchurch                                                    | TDOO                                                                               |                  |
|----------------------|---------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|
| CGW                  | Project Number: 18594                       | Client: Suburban Estates Ltd                                                         | TP02                                                                               |                  |
| Consulting Engineers | GL (mAOD): 14.10                            | N Coord: -43.583279                                                                  | E Coord: 172.55911                                                                 |                  |
| Date: 19/03/2019     | Method: Digger                              | Logged By: JF                                                                        | Scale: 1:25 Sheet 1 Of 1                                                           |                  |
|                      | (Stockwell) Level Legend 300 400            | Depth (m) Description                                                                |                                                                                    | Water            |
|                      | 13.80                                       |                                                                                      | dium sand, trace rootlets and<br>nded gravel; dark brown. Soft<br>icity (TOPSOIL). | -                |
|                      |                                             | SILT; light brown mott<br>Firm, moist, low plasti                                    | tled orange-brown and grey.<br>city.                                               | -                |
|                      |                                             | - 0.70 Becomes with mi                                                               | nor fine to medium sand.                                                           | -                |
|                      |                                             | 1.00 0.90 Becomes light gro<br>light brown.                                          | ey mottled orange-brown and                                                        | -<br><br>-       |
|                      |                                             |                                                                                      | -                                                                                  | -                |
|                      | 12.30                                       | -<br>1.80<br>- Silty SAND; bluish g                                                  | rey mottled orange-brown.                                                          | -<br>-<br>-      |
|                      | 12.10X                                      | 2.00 Medium dense; moist;<br>to medium.                                              | poorly graded. Sand is fine                                                        |                  |
|                      | 11.10X                                      | 2.70 Becomes with no                                                                 | mottling. Wet.                                                                     | -<br>-<br>-<br>- |
|                      |                                             | 3.10 Becomes with tra                                                                | ce roots/rootlets. Saturated.                                                      | -                |
|                      | ×:                                          | - 3.50 Becomes wet.                                                                  |                                                                                    | -                |
|                      | 10.20 X .<br>10.10                          | . 3.90<br>_ 4.00 End Of Hole At 3.90 m                                               |                                                                                    | -                |
|                      |                                             |                                                                                      |                                                                                    |                  |
|                      |                                             |                                                                                      |                                                                                    |                  |
|                      | - Groundwater Strike<br>- Groundwater Level | REMARKS<br>No Groundwater Encounte<br>End of Hole at 3.8 m.<br>Target Depth Reached. | ered                                                                               |                  |

|                      | Project Title: 115 Halswell Juncti    | on Road, Halswell, Christchurch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TDOO                                                                                                                                                                                                                                                                                                                 |       |
|----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CGW                  | Project Number: 18594                 | Client: Suburban Estates Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TP03                                                                                                                                                                                                                                                                                                                 |       |
| Consulting Engineers | GL (mAOD): 14.70                      | N Coord: -43.582937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E Coord: 172.559641                                                                                                                                                                                                                                                                                                  |       |
| Date: 19/03/2019     | Method: Digger                        | Logged By: JF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scale: 1:25 Sheet 1 Of 1                                                                                                                                                                                                                                                                                             |       |
| u , ,                | (Stockwell) Level Legend D<br>300 400 | Depth (m) Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                    | Water |
|                      |                                       | 0.20     brown. Soft, dry, low p       SILT, trace fine to m       firm, moist, low plast       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       Becomes with so       1.30       Silty SAND with trace mottled       2.50       Becomes with no       2.80       Becomes with no       3.00       3.20       SAND with trace silt; | edium sand; brown. Soft to<br>icity.<br>I orange-brown.<br>me fine to medium sand.<br>I orange-brown and grey.<br>I orange-brown and grey.<br>e roots/rootlets; bluish grey<br>vn. Medium dense; moist;<br>d is fine to medium.<br>roots.<br>mottling.<br>bluish grey. Medium dense;<br>ded. Sand is fine to coarse. |       |
|                      | - Groundwater Strike                  | REMARKS<br>No Groundwater Encounte<br>End of Hole at 4.0 m.<br>Target Depth Reached.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ered                                                                                                                                                                                                                                                                                                                 |       |



## Appendix E: Nearby Borehole Logs

| Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | &Rock Consultants<br>For well-grounded solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLIENT: Suburban Es<br>PROJECT: 103 Halswell                                                         |                                                    | Roa         | ad, H                                                                                                                                                                                                            | alswe       | ell                                         |                 |                                           |                   | ne Bore<br>1 of              |               | : MB01 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------|-----------------|-------------------------------------------|-------------------|------------------------------|---------------|--------|
| Drill Type:<br>Drilled By:<br>Date Started:<br>Date Finished:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sonic<br>Landtest<br>20/6/16<br>20/6/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project No:<br>Coordinates:<br>Ground Elevation:<br>Water Level:                                     | C16073.1<br>1564527.41<br>15m LYTTH<br>3.0m Ground | IT19        | 37                                                                                                                                                                                                               | 2.02 N      | 1                                           | Revi<br>Surfa   | ged By:<br>iewed By<br>ace Con<br>ar Vane |                   | JW<br>RS<br>Near leve<br>N/A | lgrass        |        |
| STRATIGRAPHY<br>GRAPHIC LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S<br>Guidelines for Fie"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cordance with the NZ Geotec<br>Society Inc 2005<br>Id Description of Soil and Roc<br>ngineering Use" | hnical                                             |             | o DEPTH (m)                                                                                                                                                                                                      | SAMPLE TYPE | C <sub>u</sub> / SPT<br>(KPa) (blows/300mm) | DRILLING METHOD | RECOVERY (%)                              | TCR<br>SCR<br>RQD | lf                           | WATER CONTENT | OTHER  |
| TOPSOIL         SPRINGSTON FORMATION         TOPSOIL         Construction         Construction | <ul> <li>trace rootlet inclus</li> <li>Fine SAND, trace packed", moist (S</li> <li>Becomes silty, gree</li> <li>Trace to minor silt</li> <li>Minor silt, light bromottles, moist to w</li> <li>Minor to some silt</li> <li>Fine sandy SILT, "Firm", wet, non-p</li> <li>Fine to medium S packed", wet.</li> <li>Fine sand, some silt</li> <li>Trace silt.</li> <li>Fine to medium S</li> <li>Minor silt.</li> <li>Trace silt.</li> <li>Fine to medium S</li> <li>packed", saturater</li> <li>Fine SAND.</li> <li>Trace to minor silt</li> <li>Minor silt.</li> <li>Fine to medium S</li> <li>packed", saturater</li> <li>Fine SAND.</li> <li>Trace to minor silt</li> <li>Minor to some silt</li> <li>SILT, trace fine sand.</li> <li>Amorphous PEAT wood inclusions, on no-plastic.</li> <li>Trace fine sand.</li> <li>Amorphous PEAT wood inclusions, on silt.</li> <li>Trace fine sand.</li> <li>Amorphous PEAT wood inclusions, on SILT, trace clay, ti</li> </ul> | to minor silt, light brown. "Tigl<br>PRINGSTON FORMATION).<br>eyish brown.                           | astic,<br>htly<br>nge<br>les.                      | Groundwater | $\begin{array}{c} 0.0 \\ - \\ - \\ - \\ 0.5 \\ - \\ - \\ - \\ 1.0 \\ - \\ - \\ - \\ 1.0 \\ - \\ - \\ - \\ 1.5 \\ - \\ - \\ - \\ 2.5 \\ - \\ - \\ - \\ - \\ 3.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ |             |                                             | Dual Tube       |                                           |                   |                              |               |        |

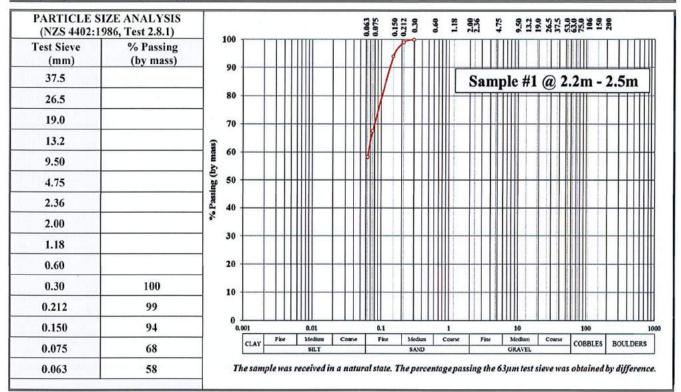
PO Box 5486, Papanui, Christchurch 8542. Phone: 03-352-4519 www.soilandrock.co.nz

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | &Rock Consultants<br>For well-grounded solutions | CLIENT: Suburban Es<br>PROJECT: 103 Halswell                                                                                                                                                                                |                                          |                 | oad, ⊢       | lalsw       | ell                                     |                 |                                          |                   | ne Bore<br>2 of              |               | : MB01 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|--------------|-------------|-----------------------------------------|-----------------|------------------------------------------|-------------------|------------------------------|---------------|--------|
| Dri<br>Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ll Type:<br>lled By:<br>te Started:<br>te Finished: | Sonic<br>Landtest<br>20/6/16<br>20/6/16          | Project No:<br>Coordinates:<br>Ground Elevation:<br>Water Level:                                                                                                                                                            | C16073.<br>1564527<br>15m LY<br>3.0m Gro | .41 E,<br>ITHT1 | 937          | 22.02 N     |                                         | Revi<br>Surfa   | ged By:<br>ewed By<br>ace Con<br>ar Vane | ditions:          | JW<br>RS<br>Near leve<br>N/A | l grass       |        |
| STRATIGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GRAPHIC LOG                                         | S<br>Guidelines for Fie<br>E                     | cordance with the NZ Geotect<br>ociety Inc 2005<br>d Description of Soil and Roc<br>ngineering Use"                                                                                                                         | k in                                     | WATER LEVEL (m) | 2. DEPTH (m) | SAMPLE TYPE | $c_{u}$ / SPT (KPa) (KPa) (blows/300mm) | DRILLING METHOD | RECOVERY (%)                             | TCR<br>SCR<br>RQD | If                           | WATER CONTENT | OTHER  |
| SPRINGSTON FORMATION SPRINGSTON FOR STATE STAT |                                                     | Grey. "Stiff", satura                            | nd, grey. "Stiff to very stiff",<br>stic.<br>ous wood inclusions, organic<br>iclusions.<br>e fine sand, trace fibrous woo<br>Stiff", saturated, non-plastic.<br>, minor silt, minor fibrous wood<br>own. "Firm", saturated. | stic.<br>ghtly<br>odour.<br>d            |                 |              |             | :: 03-35                                | Dual Tube       |                                          |                   |                              |               |        |



## **Appendix G: Laboratory Results**




**Central Testing Services** 18 Ngapara Street, P.O. Box 397, Alexandra, Central Otago, New Zealand

P: 03 4487644, W: www.centraltesting.co.nz, E: info@centraltesting.co.nz

Page 1 of 3 Pages Reference No: 16/1480 Date: 30 June 2016

## <u> TEST REPORT – 103 COUNTRY PALMS DRIVE, HALSWELL</u>

| Client Details:       | Soil & Rock Consultants, P.O. Box 10 212, Phillipstow | vn, Christchurch Atten | tion: R. Smith |
|-----------------------|-------------------------------------------------------|------------------------|----------------|
| Job Description:      | 103 Country Palms Drive, Halswell - Investigations    |                        |                |
| Sample Description:   | Sandy SILT                                            | Client Order No:       | C16073.1       |
| Sample Source:        | Machine Borehole # 1; Sample #1 @ 2.2m - 2.5m         | Sample Label No:       | N/A            |
| Date & Time Sampled:  | Unknown                                               | Sampled By:            | Unknown        |
| Sample Method:        | Borehole                                              | Date Received:         | 23-Jun-16      |
| Sample Specification: | Not Applicable                                        |                        |                |



| WATER CONTENT & PLASTICITY INDEX    | RESULTS - NZS 4402:1986, Test 2.1, 2.3, 2.4 & 2.5 |  |  |  |
|-------------------------------------|---------------------------------------------------|--|--|--|
| Water Content: (As Received) 25.5 % |                                                   |  |  |  |
| Cone Penetration Limit: (CPL)       | 28                                                |  |  |  |
| Plastic Limit: (PL)                 | Non-plastic                                       |  |  |  |
| Plasticity Index: (PI)              | Non-plastic                                       |  |  |  |

Note:

Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005 and sampling.

This report may not be reproduced except in full. .

**Tested By:** 

L.T. Smith

Date: 25 to 30-Jun-16



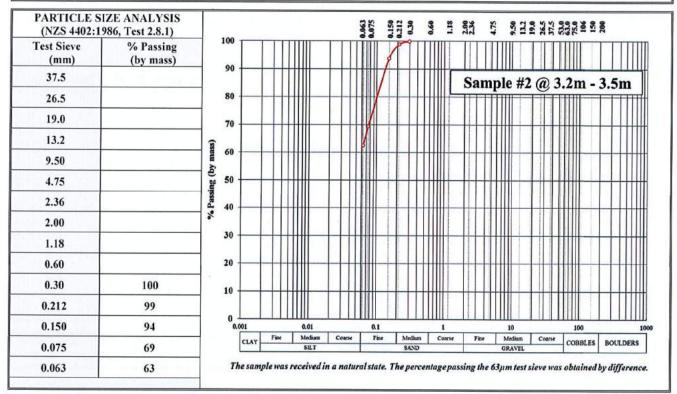
emplus



Specialist Quality Assurance Service in Aggregate, Concrete and Soils Testing

"Central Testing Services operates as a trading trust through Central Testing Services Limited as the sole trustee.




**Central Testing Services** 18 Ngapara Street, P.O. Box 397, Alexandra, Central Otago, New Zealand

P: 03 4487644, W: www.centraltesting.co.nz, E: info@centraltesting.co.nz

Page 2 of 3 Pages Reference No: 16/1480 Date: 30 June 2016

## **TEST REPORT – 103 COUNTRY PALMS DRIVE, HALSWELL**

| Client Details:       | Soil & Rock Consultants, P.O. Box 10 212, Phillipstow | vn, Christchurch Atten | tion: R. Smith |
|-----------------------|-------------------------------------------------------|------------------------|----------------|
| Job Description:      | 103 Country Palms Drive, Halswell - Investigations    |                        |                |
| Sample Description:   | Sandy SILT                                            | Client Order No:       | C16073.1       |
| Sample Source:        | Machine Borehole # 1; Sample #2 @ 3.2m - 3.5m         | Sample Label No:       | N/A            |
| Date & Time Sampled:  | Unknown                                               | Sampled By:            | Unknown        |
| Sample Method:        | Borehole                                              | Date Received:         | 23-Jun-16      |
| Sample Specification: | Not Applicable                                        |                        |                |



| WATER CONTENT & PLASTICITY INDEX                                 | X RESULTS - NZS 4402:1986, Test 2.1, 2.3, 2.4 & 2.5 |
|------------------------------------------------------------------|-----------------------------------------------------|
| Water Content: (As Received)                                     | 27.9 %                                              |
| Cone Penetration Limit: (CPL)                                    | 28                                                  |
| Plastic Limit: (PL)                                              | Non-plastic                                         |
| Plasticity Index: (PI)                                           | Non-plastic                                         |
| Note: The sample was received in a natural state. The plasticity | index material tested was whole soil.               |

Note:

Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005 and sampling.

This report may not be reproduced except in full.

**Tested By:** 

L.T. Smith

Date: 25 to 30-Jun-16

Checked By:

emplus



Specialist Quality Assurance Service in Aggregate, Concrete and Soils Testing



## **Central Testing Services** 18 Ngapara Street, P.O. Box 397, Alexandra, Central Otago, New Zealand

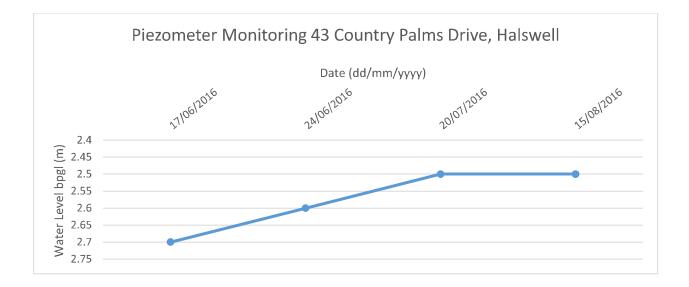
P: 03 4487644, W: www.centraltesting.co.nz, E: info@centraltesting.co.nz

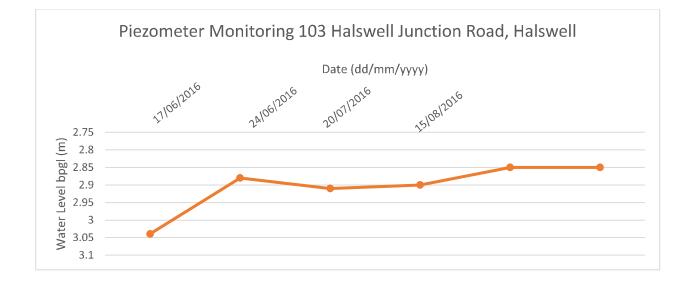
Page 3 of 3 Pages

Reference No: 16/1480

Date: 30 June 2016

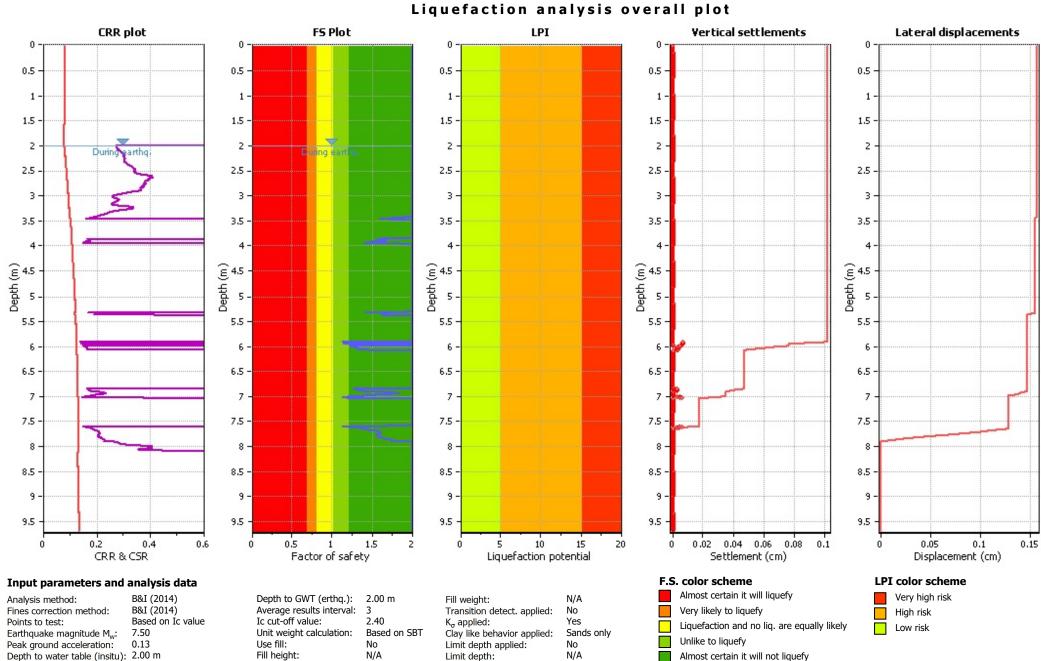
# **TEST REPORT – 103 COUNTRY PALMS DRIVE, HALSWELL**


| <b>Client Details:</b>                                                                                                                                                                                                                                                                                                                                                        | Soil & Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ck Con                                                                                 | sultants,                                                                                                        | P.O.                                                                                                                 | . Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12, Ph                               | illips                                                                                   | town                                                                                                | , Ch                                                                              | riste                                                                               | hure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h                                                                                | A                                                                                    | tten                                                                      | tio                                                   | 1:                   |                          | R. 1                                              | Smi                         | th                                  |                       |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------------------|---------------------------------------------------|-----------------------------|-------------------------------------|-----------------------|--------------|
| Job Description:                                                                                                                                                                                                                                                                                                                                                              | 103 Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | try Pal                                                                                | ms Drive                                                                                                         | e, Hal                                                                                                               | lswe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ll - In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vestiga                              | tions                                                                                    | 5                                                                                                   |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      | _                        |                                                   |                             |                                     |                       |              |
| Sample Description                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     | (                                                                                 | Clien                                                                               | t Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | der                                                                              | No                                                                                   |                                                                           |                                                       | CI                   | 607                      | 3.1                                               |                             |                                     | _                     |              |
| Sample Source:                                                                                                                                                                                                                                                                                                                                                                | Machine I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | le # 1; Sa                                                                                                       | ample                                                                                                                | e #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @ 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m - 8.                               | 5m                                                                                       |                                                                                                     | 1                                                                                 | Samj                                                                                | ole L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | abe                                                                              | I No                                                                                 | :                                                                         |                                                       | N//                  | ۱                        |                                                   |                             |                                     |                       |              |
| Date & Time Samp                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   | Samj                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           | _                                                     | Un                   |                          |                                                   |                             |                                     |                       |              |
| Sample Method:                                                                                                                                                                                                                                                                                                                                                                | Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (745) <sup>1</sup>                                                                     |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     | 1                                                                                 | Date                                                                                | Rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eive                                                                             | d:                                                                                   |                                                                           |                                                       | 23-                  | Ju                       | n-1                                               | 6                           |                                     |                       |              |
| Sample Specification                                                                                                                                                                                                                                                                                                                                                          | on: Not Applie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cable                                                                                  |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | _                                                                                        |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       | _                    |                          |                                                   |                             |                                     |                       |              |
| PARTICLE SIZ<br>(NZS 4402:1986, 7                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                      | 00                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.063                                | 0.075                                                                                    | 0.30                                                                                                | 0.60                                                                              | L18                                                                                 | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.75                                                                             |                                                                                      | 122                                                                       | 26.5                                                  | 37.5                 | 22                       | 100                                               | 200                         |                                     |                       |              |
| Test Sieve                                                                                                                                                                                                                                                                                                                                                                    | % Passing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | Ш                                                                                    |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       | Ш            |
| (mm)                                                                                                                                                                                                                                                                                                                                                                          | (by mass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | 90                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     | +++                                                                               |                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | Ш                                                                                    |                                                                           |                                                       |                      |                          | 11                                                |                             | Ш                                   |                       | Щ            |
| 26.5                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   | 1                                                                                   | San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | npl                                                                              | e ‡                                                                                  | 3 (                                                                       | a                                                     | 8.2                  | m                        | -                                                 | 8.5                         | m                                   |                       |              |
| 19.0                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | 80                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |                                                                                          |                                                                                                     | +++                                                                               | IIII                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ť                                                                                | HII                                                                                  | -                                                                         | Ť                                                     | T                    | TTT                      | =                                                 | T                           | TT                                  | III                   | #            |
| 13.2                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           | 11                                                    | 11                   |                          |                                                   |                             |                                     | 111                   |              |
| 9.50                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | 70                                                                                                               |                                                                                                                      | ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | $\left  \right  \right $                                                             | -                                                                         |                                                       | +                    | +++                      | -                                                 | -                           | +                                   |                       | $\mathbb{H}$ |
| 4.75                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                      |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| 2.36                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mass)                                                                                  | 60                                                                                                               | +++                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +++                                  |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                               |                                                                                      | -                                                                         | $\left  \right $                                      | ++                   | ₩                        |                                                   | -                           | +                                   | $\parallel \mid$      | $\mathbb{H}$ |
| 2.00                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - fag                                                                                  |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| 1.18                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % Passing (by                                                                          | 50                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                          |                                                                                                     | +++                                                                               |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ++                                                                               |                                                                                      |                                                                           |                                                       |                      | $\left  \right  \right $ |                                                   | -                           | ++                                  | ₩                     | ₩            |
| 0.60                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | issi                                                                                   |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                                                          |                                                                                                     | 1111                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       | 11                   | Ш                        |                                                   |                             |                                     | Ш                     |              |
| 0.30                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.                                                                                     | 40                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       | ++                   |                          | -                                                 |                             | ++                                  | ₩                     | H            |
| 0.212                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                      |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| 0.150                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | 30                                                                                                               |                                                                                                                      | 1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      | -                                                                         |                                                       |                      |                          |                                                   |                             |                                     | $\parallel \parallel$ | H            |
| 0.075                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┥.                                                                                     |                                                                                                                  |                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| 0.063                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - '                                                                                    | 20                                                                                                               | 1                                                                                                                    | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     | 1111                                                                              | 111                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       | Ħ                    |                          |                                                   | -                           | Ħ                                   | ĦŦ                    | H            |
| 0.063                                                                                                                                                                                                                                                                                                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 1                                                                                    |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| Fraction<br>Size                                                                                                                                                                                                                                                                                                                                                              | Interpolated %<br>Passing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | 10                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                      |                                                                           |                                                       |                      |                          |                                                   |                             |                                     |                       |              |
| 60 µm                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                          |                                                                                                     |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                | un                                                                                   |                                                                           |                                                       |                      |                          |                                                   | _                           |                                     |                       | m.           |
| 00 μ                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        | 0.001                                                                                                            |                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 0.1                                                                                      |                                                                                                     |                                                                                   | 1                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | 10                                                                                   |                                                                           |                                                       |                      | 1                        | 00                                                |                             |                                     |                       | 1000         |
| 20 µm                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                      | 0.001                                                                                                            | Fine                                                                                                                 | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Siam (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coarse                               | 0.1<br>Fine                                                                              | Medi                                                                                                |                                                                                   | 1<br>Coarse                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ine                                                                              | Me                                                                                   | tiven                                                                     | Cor                                                   | use                  | -                        | 00<br>BBLE                                        | S B                         | OULD                                |                       | 1000         |
| 20 µm                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | CLAY                                                                                                             | _                                                                                                                    | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sum d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | Fine                                                                                     | SAN                                                                                                 | D                                                                                 | Coarse                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | Me                                                                                   | lium<br>VEL                                                               | -                                                     | _                    | con                      | BBLE                                              |                             |                                     | DERS                  |              |
| 20 μm<br>6 μm                                                                                                                                                                                                                                                                                                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                      |                                                                                                                  | le was                                                                                                               | Me<br>SI<br>recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum LT<br>Ved in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | natural                              | Fine<br>state. 1                                                                         | san<br>The pe                                                                                       | rcenta                                                                            | Coarse<br>agepa                                                                     | ssing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the 6                                                                            | Mer<br>GRJ<br>3µm                                                                    | tion<br>VEL<br>test s                                                     | ieve                                                  | was                  | con                      | BBLE                                              | dby                         |                                     | DERS                  |              |
| 20 μm<br>6 μm<br>2 μm                                                                                                                                                                                                                                                                                                                                                         | 60<br>21<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        | CLAY<br>The samp<br>The pH of                                                                                    | le was<br>f the hy                                                                                                   | Mer<br>SI<br>recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sum LT<br>LT<br>ved in a<br>teter su:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | natural<br>spension                  | Fine<br>state. 1<br>was 9.                                                               | san<br>The pe<br>5. Sod                                                                             | rcenta<br>lium h                                                                  | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the 6<br>osph                                                                    | Me<br>GRJ<br>3µm<br>ate w                                                            | lium<br>VEL<br>test s<br>as us                                            | ieve<br>ed a                                          | was<br>s a d         | obte<br>obte             | BBLE<br>aine<br>ersai                             | d by ant.                   |                                     | DERS                  |              |
| 20 μm<br>6 μm<br>2 μm<br>PARTI                                                                                                                                                                                                                                                                                                                                                | 60<br>21<br>11<br>CLE SIZE ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        | CLAY<br>The samp<br>The pH of<br>& HYDR                                                                          | le was<br>f the hy<br>OMI                                                                                            | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fine<br>state. 7<br>was 9.<br>IS RI                                                      | san<br>The pe<br>5. Sod<br>ESUI                                                                     | rcenta<br>lium h                                                                  | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the 6<br>osphi<br>02:1                                                           | Mer<br>OR<br>3µm<br>ate w                                                            | lium<br>WEL<br>test s<br>as us                                            | ieve<br>ed a<br>est 2                                 | was<br>s a d         | obte<br>lispe            | BBLE<br>aine<br>ersai                             | dby<br>nt.<br>8.4           | diffe                               | DERS                  | <br>ce.      |
| 20 μm<br>6 μm<br>2 μm                                                                                                                                                                                                                                                                                                                                                         | 60<br>21<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nge                                                                                    | CLAY<br>The samp<br>The pH of                                                                                    | le was<br>f the hy<br>OMI                                                                                            | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fine<br>state. 7<br>was 9<br>IS RI<br>Desc                                               | san<br>The pe<br>5. Sod<br>ESUI<br>riptic                                                           | ncenta<br>fium h<br>LTS<br>on                                                     | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the 6<br>osphi<br>02:1<br>ract                                                   | Me<br>OR/<br>3µm<br>ate w<br>980<br>io n                                             | lium<br>NEL<br>test s<br>as us<br>6, To<br>Rar                            | ieve<br>ed a<br>est 2                                 | was<br>s a d<br>2.8. | obte<br>lispe            | BBLE<br>aine<br>ersai                             | d by ant.                   | <i>diffe</i><br>nin                 | DERS                  | <br>ce.      |
| 20 μm<br>6 μm<br>2 μm<br>PARTI<br>Description                                                                                                                                                                                                                                                                                                                                 | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nge<br>.0mm                                                                            | CLAY<br>The samp<br>The pH of<br>& HYDR                                                                          | le was<br>f the hy<br>OMI                                                                                            | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fint<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine                                      | 5AN<br>The per<br>5. Sod<br>ESUI<br>riptic<br>e San                                                 | rcenta<br>lium h<br>LTS<br>on<br>d                                                | Coarse<br>agepa<br>hexam                                                            | ssing<br>tetaph<br>S 44<br>F<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the 6<br>osph<br>02:1<br>ract<br>0 µ1                                            | Me<br>OR<br>3µm<br>ate w<br>980<br>io n                                              | iken<br>AVEL<br>test s<br>as us<br>6, To<br>Rar<br>60                     | ieve<br>ed a<br>est 2<br>nge<br>μm                    | was<br>s a d<br>2.8. | obte<br>lispe            | BBLE<br>aine<br>ersai                             | ed by<br>nr.<br>8.4<br>With | diffe<br>nin<br>3                   | DERS                  | <br>ce.      |
| 20 μm<br>6 μm<br>2 μm<br>PARTI<br>Description<br>Coarse Gravel                                                                                                                                                                                                                                                                                                                | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nge<br>.0mm<br>0mm                                                                     | CLAY<br>The samp<br>The pH of<br>& HYDR                                                                          | le was<br>f the hy<br>OMI<br>/ithin<br>-                                                                             | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fion<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar                               | san<br>The per<br>S. Sod<br>ESUI<br>riptic<br>e San<br>rse Si                                       | rcenta<br>fium h<br>LTS<br>on<br>d                                                | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>Fi<br>20<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the 6<br>osph<br>02:1<br>ract<br>0 µ1<br>) µп                                    | Me<br>GRJ<br>3µm<br>atew<br>980<br>ion<br>n to<br>1 to                               | test s<br>as us<br>6, To<br>Rar<br>60<br>20                               | ieve<br>ed a<br>est 2<br>nge<br>μm<br>μm              | was<br>s a d<br>2.8. | obte<br>lispe            | BBLE<br>aine<br>ersai                             | ad by<br>nr.<br>8.4<br>With | diffe<br>nin<br>3                   | DERS                  | <br>ce.      |
| 20 μm<br>6 μm<br>2 μm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel                                                                                                                                                                                                                                                                                               | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>6.0mm to 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nge<br>.0mm<br>0mm<br>0 mm                                                             | CLAY<br>The samp<br>The pH of<br>& HYDR                                                                          | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-                                                                       | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fior<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi                       | SAN<br>The per<br>S.S. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S                             | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>ilt                                  | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>F<br>20<br>60<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the 6<br>osphi<br>02:1<br>02:1<br>гасt<br>0 µп<br>0 µп                           | Me<br>or<br>3µm<br>atew<br>980<br>ion<br>n to<br>n to<br>n to                        | test s<br>as us<br>b, To<br>Rar<br>60<br>20 j<br>6 µ                      | ieve<br>ed a<br>est 2<br>nge<br>μm<br>μm              | was<br>s a d<br>2.8. | obte<br>lispe            | BBLE<br>aine<br>ersai                             | 8.4<br>With                 | diffe                               | DERS                  | <br>ce.      |
| 20 μm       6 μm       2 μm       PARTI       Description       Coarse Gravel       Medium Gravel       Fine Gravel                                                                                                                                                                                                                                                           | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>6.0mm to 2.00<br>2.00mm to 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nge<br>.0mm<br>0mm<br>0 mm<br>0 µm                                                     | CLAY<br>The samp<br>The pH of<br>& HYDR                                                                          | le was<br>f the hy<br>OMI<br>/ithin<br>-                                                                             | Me<br>SI<br>recei<br>ydron<br>ETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sum<br>LT<br>wed in a<br>neter su:<br>RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS          | Fine<br>state. 2<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin                | san<br>The per<br>S. South<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt                  | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>ilt                                  | Coarse<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>F<br>20<br>60<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the 6<br>osph<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп                            | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>n to<br>n to<br>n to | test s<br>as us<br>6, T c<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ              | ieve<br>ed a<br>est 2<br>nge<br>μm<br>μm              | was<br>s a d<br>2.8. | obte<br>lispe            | BBLE<br>aine<br>ersai                             | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>6.0mm to 2.00<br>2.00mm to 60<br>600 μm to 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nge<br>.0mm<br>0mm<br>0 mm<br>0 µm<br>0 µm                                             | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W                                                                   | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-<br>-<br>-<br>-                                                        | Me<br>st<br>recei<br>ydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soan LT<br>Ved in a<br>neter su:<br>R AN<br>nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | natural<br>spension<br>ALYS          | Fine<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C           | san<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt<br>Clay           | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>filt                                 | Course<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>F<br>20<br>60<br>2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the 6.<br>osph<br>02:1<br>ract<br>0 µп<br>0 µп<br>6 µп<br><                      | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe                               | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>6.0mm to 2.00<br>2.00mm to 60<br>600 μm to 200<br>WATER CONTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm                                             | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W                                                                   | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-<br>-<br>-<br>-                                                        | Me<br>st<br>recei<br>ydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soan LT<br>Ved in a<br>neter su:<br>R AN<br>nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | natural<br>spension<br>ALYS          | Fine<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C           | san<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt<br>Clay           | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>filt                                 | Course<br>agepa<br>hexam                                                            | ssing<br>etaph<br>S 44<br>F<br>20<br>60<br>2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the 6.<br>osph<br>02:1<br>ract<br>0 µп<br>0 µп<br>6 µп<br><                      | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(6.0mm to 2.00<br>2.00mm to 60<br>(6.0mm to 200<br>0.00mm to | nge<br>.0mm<br>0mm<br>0 mm<br>0 µm<br>0 µm<br>NT & P<br>ed)                            | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W                                                                   | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-<br>-<br>-<br>-                                                        | Me<br>st<br>recei<br>ydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soan LT<br>Ved in a<br>neter su:<br>R AN<br>nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | natural<br>spension<br>ALYS          | Fine<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C           | san<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt<br>Clay           | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>filt                                 | Coarse<br>agepa<br>hexam<br>- NZ<br>2:19                                            | ssing<br>etaph<br>S 44<br>F<br>20<br>60<br>2<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the 6<br>osphi<br>02:1<br>raet<br>0 µп<br>0 µп<br>5 µп<br><<br>cest              | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 60<br>(0.0mm to 2.00<br>2.00mm to 2.00<br>WATER CONTEN<br>pontent: (As Receiv<br>tetration Limit: (Contents)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nge<br>.0mm<br>0mm<br>0 mm<br>0 µm<br>0 µm<br>NT & P<br>ed)                            | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W                                                                   | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-<br>-<br>-<br>-                                                        | Me<br>st<br>recei<br>ydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soan LT<br>Ved in a<br>neter su:<br>R AN<br>nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | natural<br>spension<br>ALYS          | Fine<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C           | san<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt<br>Clay           | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>filt                                 | Coarse<br>agepa<br>- NZZ<br>- NZZ<br>- 30                                           | ssing  <br>etaph<br>S 44<br>F)<br>20<br>60<br>2<br>(<br>86, T<br>9.0 %<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the 6<br>osphi<br>02:1<br>raet<br>0 µп<br>0 µп<br>5 µп<br><<br>cest              | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>(0.0mm to                | nge<br>.0mm<br>0mm<br>0 mm<br>0 µm<br>0 µm<br>NT & P<br>ed)                            | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W                                                                   | le was<br>f the hy<br>OMI<br>/ith in<br>-<br>-<br>-<br>-<br>-                                                        | Me<br>st<br>recei<br>ydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Soan LT<br>Ved in a<br>neter su:<br>R AN<br>nge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | natural<br>spension<br>ALYS          | Fine<br>state. 1<br>was 9<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C           | san<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>ne Silt<br>Clay           | ncenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>filt                                 | Coarse<br>agepa<br>- NZZ<br>- NZZ<br>- 30                                           | ssing<br>etaph<br>S 44<br>F)<br>20<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>6(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(<br>2)<br>7(2)<br>7( | the 6<br>osphi<br>02:1<br>raet<br>0 µп<br>0 µп<br>5 µп<br><<br>cest              | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 2.00<br>(0.0mm t                | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>NT & P<br>ed)<br>CPL)                    | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>PLASTIC                                                        | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessee Meesse   | Stan during and the start of th | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C<br>TS -  | SAN<br>The peed<br>S.S. Sod<br>ESUI<br>riptic<br>e San<br>rise Si<br>um S<br>ee Silt<br>Clay<br>NZS | D<br>rcentu<br>lium h<br>LTS<br>Dn<br>d<br>d<br>filt<br>Silt<br>t                 | Coarse<br>age pa<br>hexam<br>- NZ<br>2:199<br>30                                    | ssing i<br>etaph<br>S 44<br>F<br>20<br>6(<br>2<br>(<br>(<br>86, T<br>).0 %<br>31<br>26<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the 6<br>osphi<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп<br>< с                    | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand                                                                                                                                                                                                                                                  | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>(0.0mm to                | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>NT & P<br>ed)<br>CPL)                    | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>PLASTIC                                                        | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessee Meesse   | Stan during and the start of th | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coar<br>Medi<br>Fin<br>C<br>TS -  | SAN<br>The peed<br>S.S. Sod<br>ESUI<br>riptic<br>e San<br>rise Si<br>um S<br>ee Silt<br>Clay<br>NZS | D<br>rcentu<br>lium h<br>LTS<br>Dn<br>d<br>d<br>filt<br>Silt<br>t                 | Coarse<br>age pa<br>hexam<br>- NZ<br>2:199<br>30                                    | ssing i<br>etaph<br>S 44<br>F<br>20<br>6(<br>2<br>(<br>(<br>86, T<br>).0 %<br>31<br>26<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the 6<br>osphi<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп<br>< с                    | Me<br>OR<br>3µm<br>ate w<br>1980<br>ion<br>1980<br>ion<br>to<br>1 to<br>2 µ          | then<br>vel<br>test s<br>5, T (<br>Rar<br>60<br>20 μ<br>6 μ<br>2 μ<br>.m  | ieve<br>sed a<br>nge<br>μm<br>μm<br>μm<br>μm          | was<br>s a d<br>2.8. | obtilispe                | BBLE<br>aine<br>ersai<br>2 2.3<br>%               | with<br>with                | diffe<br>nin<br>3<br>37<br>39<br>10 | DERS                  | <br>ce.      |
| 20 µm<br>6 µm<br>2 µm<br>PARTI<br>Description<br>Coarse Gravel<br>Medium Gravel<br>Fine Gravel<br>Coarse Sand<br>Medium Sand<br>Water Co<br>Cone Pen<br>Plastic Li<br>Plasticity<br>Note: The<br>te:<br>Informati<br>Guideline                                                                                                                                                | 60<br>21<br>11<br>CLE SIZE ANAL<br>Fraction Ra<br>60.0mm to 20.<br>20.0mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 6.0<br>(0.0mm to 2.00<br>2.00mm to 2.00<br>(0.0mm t                | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>Fural state.<br>which is No                  | le was<br>6 the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessi<br>recei<br>sydrom<br>ETE<br>n Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dian dian dian diana di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcentu<br>fium h<br>LTS<br>Dn<br>d<br>ilt<br>Silt<br>t<br>was 1                   | Coarse<br>age pa<br>hexamine<br>- NZ<br>2:199<br>30                                 | ssing eetaph<br>S 444<br>F1<br>20<br>60<br>2<br>(<br>0<br>86, T<br>1,0 %<br>31<br>26<br>5<br>5<br>2 soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the 6<br>osphi<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп<br><<br>5 µп<br><<br>'est | Menon<br>ORJ<br>3µmm<br>ate w<br>980<br>ion<br>1 to<br>1 to<br>1 to<br>2 µ<br>2.1,   | test s<br>as us<br>5, T (<br>Rar<br>60<br>20 μ<br>2 μ<br>3<br>m<br>2.3,   | est 2<br>nge<br>μm<br>μm<br>m                         | was<br>s a d<br>2.8. | 2.5                      | BBLE<br>aine<br>ersan<br>2 2.1<br>%               | ad by (nt.<br>8.4<br>With   | diffe                               | Ra                    | <br>ce.      |
| 20 μm         6 μm         2 μm         PARTI         Description         Coarse Gravel         Medium Gravel         Fine Gravel         Coarse Sand         Medium Sand         Water Co         Cone Per         Plastic Li         Plastic ty         Note: The         • Informati         Guideline         • This report         ted By:       L.T.                    | 60 21 11 CLE SIZE ANAL Fraction Ra 60.0mm to 20. 20.0mm to 6.0 20.0mm to 2.00 2.00mm to 6.0 6.0mm to 2.00 2.00mm to 60 600 μm to 200 WATER CONTEN ontent: (As Receiv eteration Limit: (C imit: (PL) Index: (PI) sample was received a s 2005 and sampling. et may not be reprodue Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>Fural state.<br>which is No                  | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meesse<br>Standard Standard Stan | dian dian dian diana di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcentu<br>fium h<br>LTS<br>Dn<br>d<br>ilt<br>Silt<br>t<br>was 1                   | Coarse<br>age pa<br>hexamine<br>- NZ<br>2:199<br>30                                 | ssing eetaph<br>S 444<br>F1<br>20<br>60<br>2<br>(<br>0<br>86, T<br>1,0 %<br>31<br>26<br>5<br>5<br>2 soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the 6<br>osphi<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп<br><<br>5 µп<br><<br>'est | Menon<br>ORJ<br>3µmm<br>ate w<br>980<br>ion<br>1 to<br>1 to<br>1 to<br>2 µ<br>2.1,   | test s<br>as us<br>5, T (<br>Rar<br>60<br>20 μ<br>2 μ<br>3<br>m<br>2.3,   | est 2<br>nge<br>μm<br>μm<br>m                         | was<br>s a d<br>2.8. | 2.5                      | BBLE<br>aine<br>ersan<br>2 2.1<br>%               | ad by (nt.<br>8.4<br>With   | diffe                               | Ra                    | <br>ce.      |
| 20 μm         6 μm         2 μm         PARTI         Description         Coarse Gravel         Medium Gravel         Fine Gravel         Coarse Sand         Medium Sand         Water Co         Cone Per         Plastic Li         Plastic ty         Note: The         • Informati         Guideline         • This report         ted By:       L.T.                    | 60         21         11         CLE SIZE ANAL         Fraction Ra         60.0mm to 20.         20.0mm to 6.0         20.0mm to 6.0         6.0mm to 2.00         2.00mm to 6.0         600 µm to 200         000 µm to 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>fural state.<br>which is No<br>rept in full. | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meesse<br>Standard Standard Stan | dan di an di anti di a | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcentu<br>fium h<br>LTS<br>Dn<br>d<br>ilt<br>Silt<br>t<br>was 1                   | Coarse<br>age pa<br>hexamine<br>- NZ<br>2:199<br>30                                 | ssing eetaph<br>S 444<br>F1<br>20<br>60<br>2<br>(<br>0<br>86, T<br>1,0 %<br>31<br>26<br>5<br>5<br>2 soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the 6<br>osphi<br>02:1<br>ract<br>0 µп<br>0 µп<br>0 µп<br><<br>5 µп<br><<br>'est | Menon<br>ORJ<br>3µmm<br>ate w<br>980<br>ion<br>1 to<br>1 to<br>1 to<br>2 µ<br>2.1,   | test s<br>as us<br>5, T (<br>Rar<br>60<br>20 μ<br>2 μ<br>3<br>m<br>2.3,   | est 2<br>nge<br>μm<br>μm<br>m                         | was<br>s a d<br>2.8. | 2.5                      | BBLE<br>aine<br>ersan<br>2 2.1<br>%               | ad by (nt.<br>8.4<br>With   | diffe                               | Ra                    | <br>ce.      |
| 20 μm         6 μm         2 μm         PARTI         Description         Coarse Gravel         Medium Gravel         Fine Gravel         Coarse Sand         Medium Sand         Water Co         Cone Per         Plastic Li         Plastic Li         Plastic ty         Note: The         • Informati         Guideline         • This report         ted By:       L.T. | 60 21 11 CLE SIZE ANAL Fraction Ra 60.0mm to 20. 20.0mm to 6.0 20.0mm to 2.00 2.00mm to 6.0 6.0mm to 2.00 2.00mm to 60 600 μm to 200 WATER CONTEN ontent: (As Receiv eteration Limit: (C imit: (PL) Index: (PI) sample was received a s 2005 and sampling. et may not be reprodue Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>fural state.<br>which is No<br>rept in full. | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessi<br>receir<br>ydron<br>ETE<br>I Ra<br>INI<br>Dlasti<br>IZ Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dan di an di anti di a | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcenta<br>fium h<br>LTS<br>on<br>d<br>d<br>ilt<br>Silt<br>t<br>was n<br>mple a    | Coarse<br>age pa<br>hexamine<br>- NZ<br>2:199<br>30                                 | ssing (etaph<br>(S 44)<br>F)<br>20<br>60<br>2<br>(<br>(<br>86, T<br>)<br>0 %<br>31<br>26<br>5<br>5<br><i>c</i> soil.<br>iption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the 6<br>osphi<br>02:1<br>ract<br>0 µn<br>0 µn<br>0 µn<br>(° µn                  | Me<br>OR<br>3µm<br>atew<br>980<br>ion<br>n to<br>n to<br>n to<br>2 µ<br>2.1,<br>sed  | test s<br>as us<br>5, T (<br>Rar<br>60<br>20 μ<br>2 μ<br>3<br>m<br>2.3,   | est 2<br>nge<br>μm<br>μm<br>m                         | was<br>s a d<br>2.8. | 2.5                      | BBLE<br>aine<br>ersan<br>2 2.1<br>%               | ad by (nt.<br>8.4<br>With   | diffe                               | Ra                    | <br>ce.      |
| 20 μm         6 μm         2 μm         PARTI         Description         Coarse Gravel         Medium Gravel         Fine Gravel         Coarse Sand         Medium Sand         Water Co         Cone Per         Plastic Li         Plasticity         Note: The         • Informati         Guideline         • This report         ted By:       L.T.         exceed By: | 60 21 11 CLE SIZE ANAL Fraction Ra 60.0mm to 20. 20.0mm to 6.0 20.0mm to 2.00 2.00mm to 6.0 6.0mm to 2.00 2.00mm to 60 600 μm to 200 WATER CONTEN ontent: (As Receiv eteration Limit: (C imit: (PL) Index: (PI) sample was received a s 2005 and sampling. et may not be reprodue Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>fural state.<br>which is No<br>rept in full. | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessi<br>receir<br>ydron<br>ETE<br>I Ra<br>INI<br>Dlasti<br>IZ Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dan di an di anti di a | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>iilt<br>iilt<br>t<br>was t<br>mple a | Coarse<br>age pa<br>texamine<br>- NZ<br>2:19:<br>30<br>2:19:<br>30<br>descrition    | ssing (etaph<br>(S 44)<br>F)<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>2<br>6<br>5<br>2<br>soil.<br>iption<br>ndicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the 6<br>osphi<br>02:1<br>ract<br>0 μπ<br>< μπ<br>< cst<br>5<br>s ba             | Me<br>OR<br>3µm<br>ate w<br>986<br>ion<br>1 to<br>1 to<br>2 µ<br>2.1,<br>sed         | ынп<br>WEL<br>test s<br>5, ТС<br>Rar<br>60<br>20 j<br>6 µ<br>2 µп<br>2.3, | ieve<br>ed a<br>est 2<br>ige<br>μm<br>m<br>m<br>, 2.4 | was<br>s a d<br>2.8. | 2.5                      | aine<br>aine<br>arsaine<br>2 2.3<br>% 1<br>5<br>5 | d by mt.<br>8.4<br>With     | diffe                               | Ra                    | <br>ce.      |
| 20 μm         6 μm         2 μm         PARTI         Description         Coarse Gravel         Medium Gravel         Fine Gravel         Coarse Sand         Medium Sand         Water Co         Cone Per         Plastic Li         Plasticity         Note: The         • Informati         Guideline         • This report         ted By:       L.T.         exceed By: | 60 21 11 CLE SIZE ANAL Fraction Ra 60.0mm to 20. 20.0mm to 6.0 20.0mm to 2.00 2.00mm to 6.0 6.0mm to 2.00 2.00mm to 60 600 μm to 200 WATER CONTEN ontent: (As Receiv eteration Limit: (C imit: (PL) Index: (PI) sample was received a s 2005 and sampling. et may not be reprodue Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nge<br>.0mm<br>0mm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>0 μm<br>cPL)<br>cPL)<br>in a nat | CLAY<br>The samp<br>The pH of<br>& HYDR<br>% W<br>% W<br>PLASTIC<br>fural state.<br>which is No<br>rept in full. | le was<br>f the hy<br>OMII<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Meessi<br>receir<br>ydron<br>ETE<br>I Ra<br>INI<br>Dlasti<br>IZ Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dan di an di anti di a | natural<br>spension<br>ALYS<br>RESUI | Fine<br>state. 1<br>was 9.<br>IS RI<br>Desc<br>Fine<br>Coan<br>Medi<br>Fin<br>C<br>TTS - | sam<br>The pee<br>.5. Sod<br>ESUI<br>riptic<br>e San<br>rse Si<br>um S<br>e Silt<br>Clay<br>NZS     | rcenta<br>fium h<br>LTS<br>on<br>d<br>ilt<br>iilt<br>iilt<br>t<br>was t<br>mple a | Coarse<br>age pa<br>texam<br>- NZ<br>2:190<br>30<br>2:190<br>30<br>descri<br>Not Ac | ssing (etaph<br>(S 44)<br>F)<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>20<br>60<br>2<br>(<br>0<br>86, T<br>2<br>6<br>5<br>2<br>soil.<br>iption<br>ndicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the 6<br>osphi<br>02:1<br>ract<br>0 μπ<br>< μπ<br>< cst<br>5<br>s ba             | Me<br>OR<br>3µm<br>ate w<br>986<br>ion<br>1 to<br>1 to<br>2 µ<br>2.1,<br>sed         | ынп<br>WEL<br>test s<br>5, ТС<br>Rar<br>60<br>20 j<br>6 µ<br>2 µп<br>2.3, | ieve<br>ed a<br>est 2<br>ige<br>μm<br>m<br>m<br>, 2.4 | was<br>s a d<br>2.8. | 2.5                      | aine<br>aine<br>arsaine<br>2 2.3<br>% 1<br>5<br>5 | d by mt.<br>8.4<br>With     | nin 3<br>37<br>39<br>10<br>11       | Ra                    | <br>ce.      |

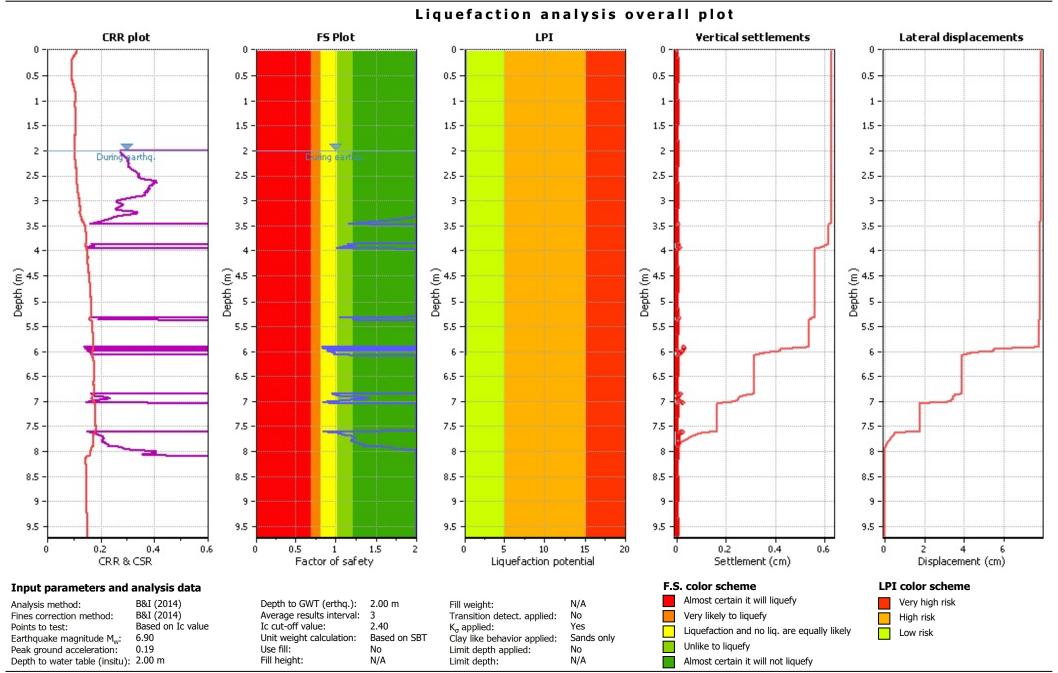

"Central Testing Services operates as a trading trust through Central Testing Services Limited as the sole trustee.



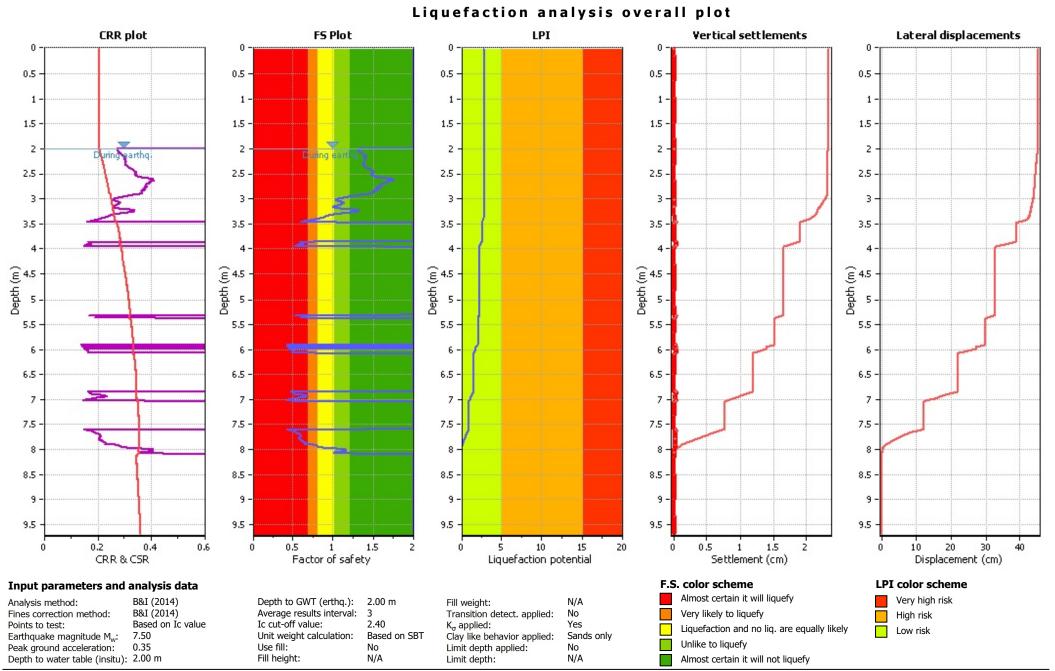
Appendix H: Groundwater Monitoring Data


### Piezometer Monitoring Information



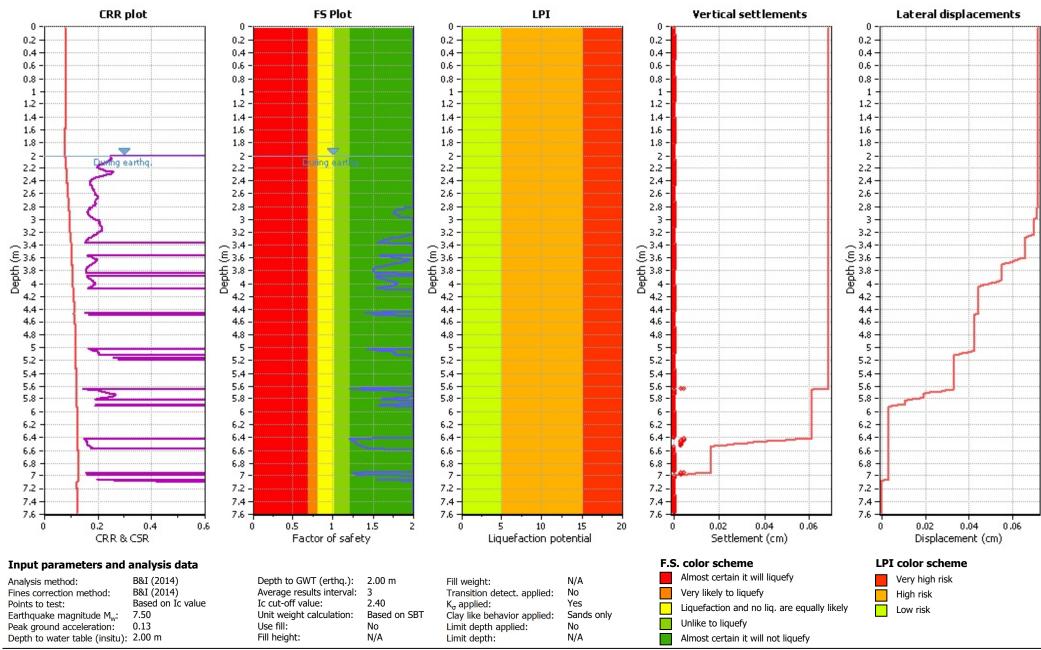






## **Appendix I: Liquefaction Analysis Results**

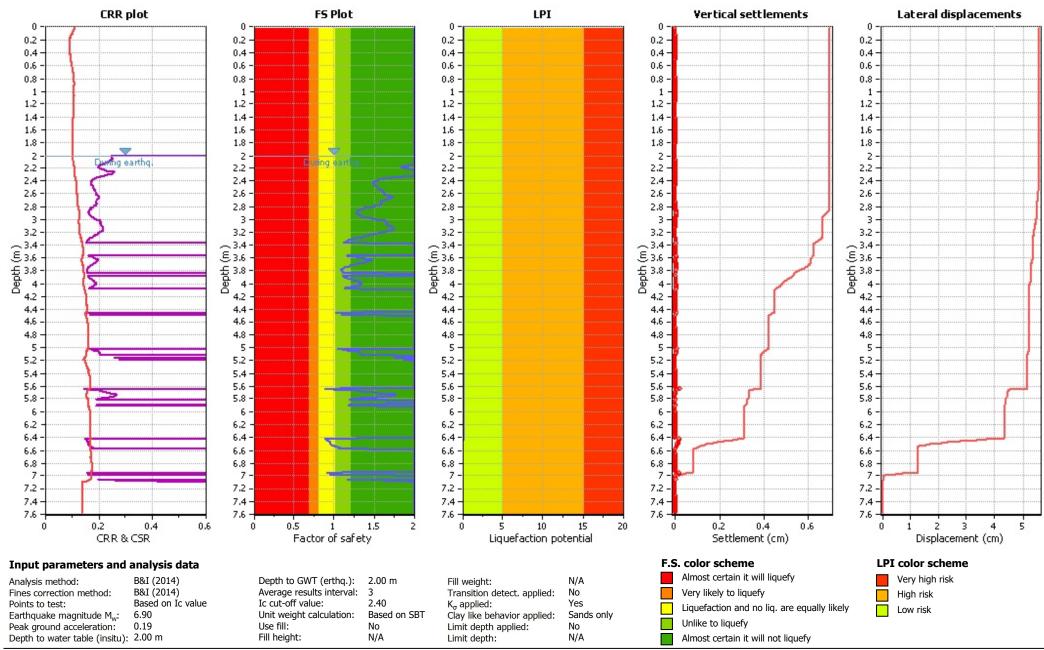


CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:57:49 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



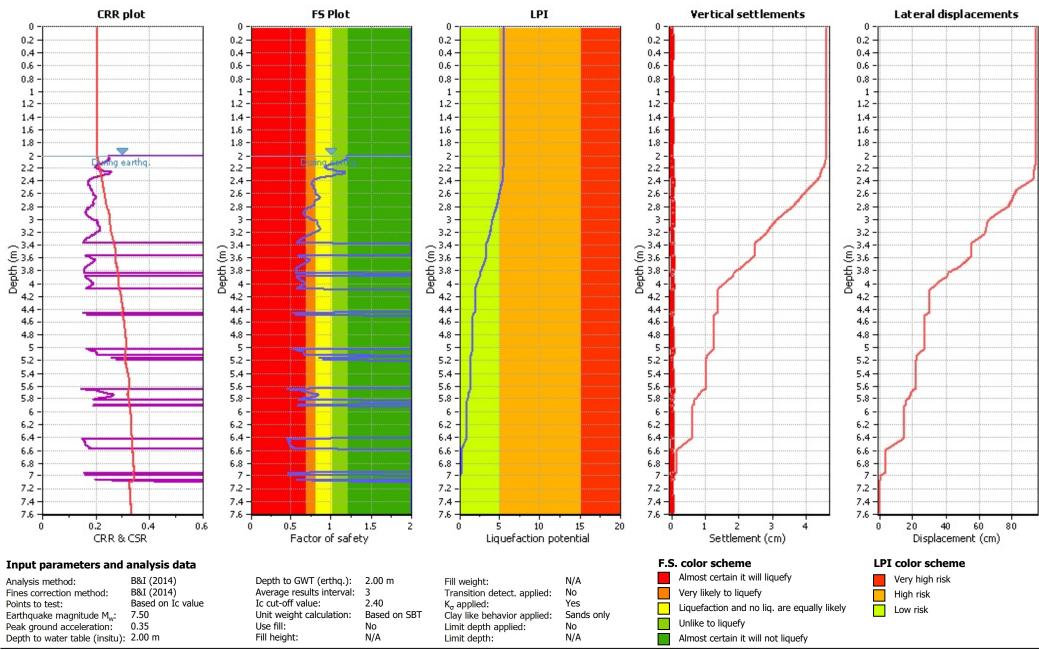

CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:23:23 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:23:54 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq

#### Liquefaction analysis overall plot




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:24:28 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq





CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:25:32 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq

#### Liquefaction analysis overall plot



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:26:18 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq

0

0.5

1 .

1.5

2

2.5

3

3.5

(m) 4.5 5.5 Debth (m)

4

6

6.5

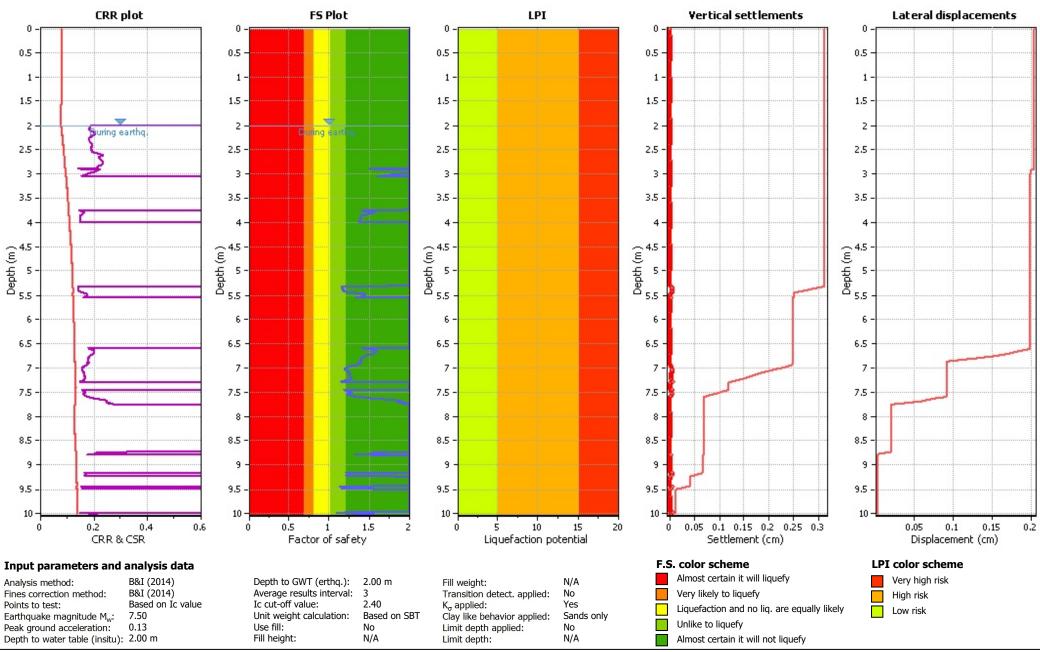
7

7.5

8

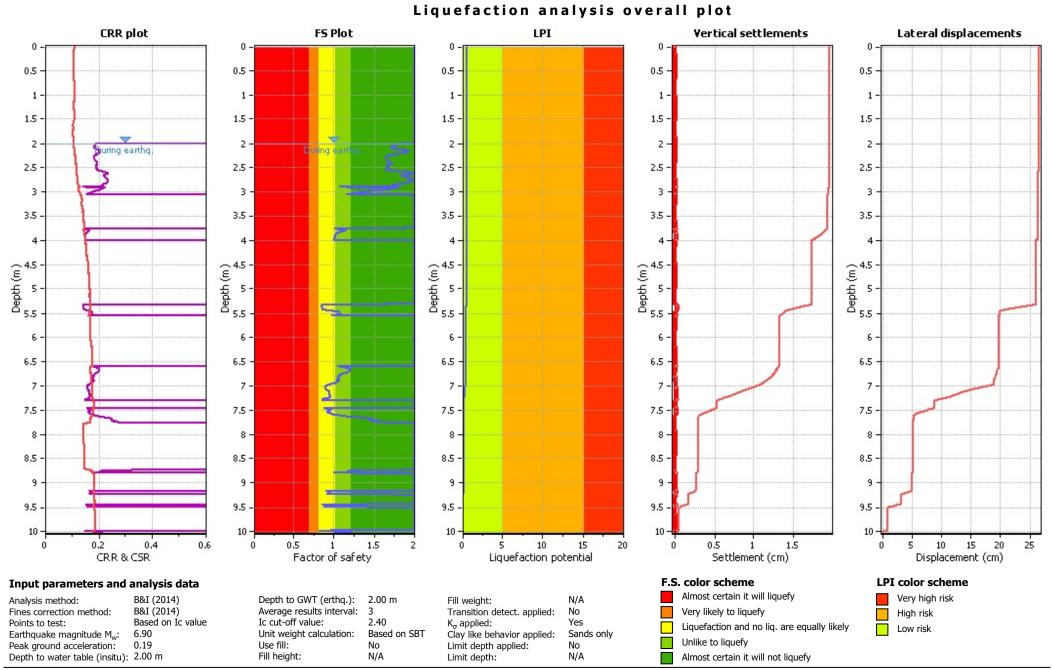
8.5

9

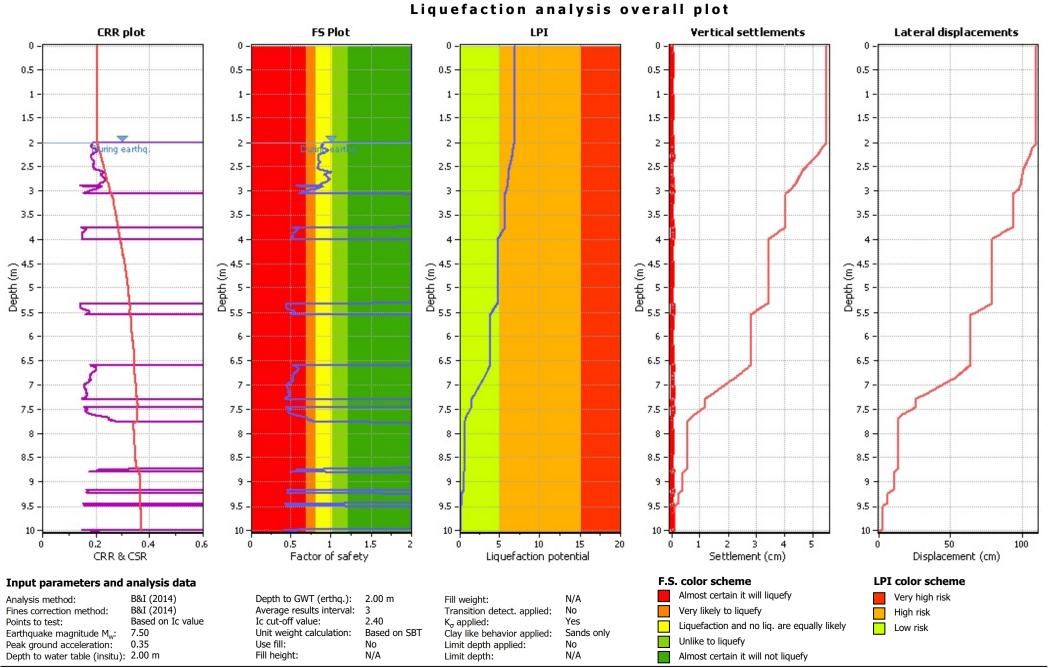

9.5

10

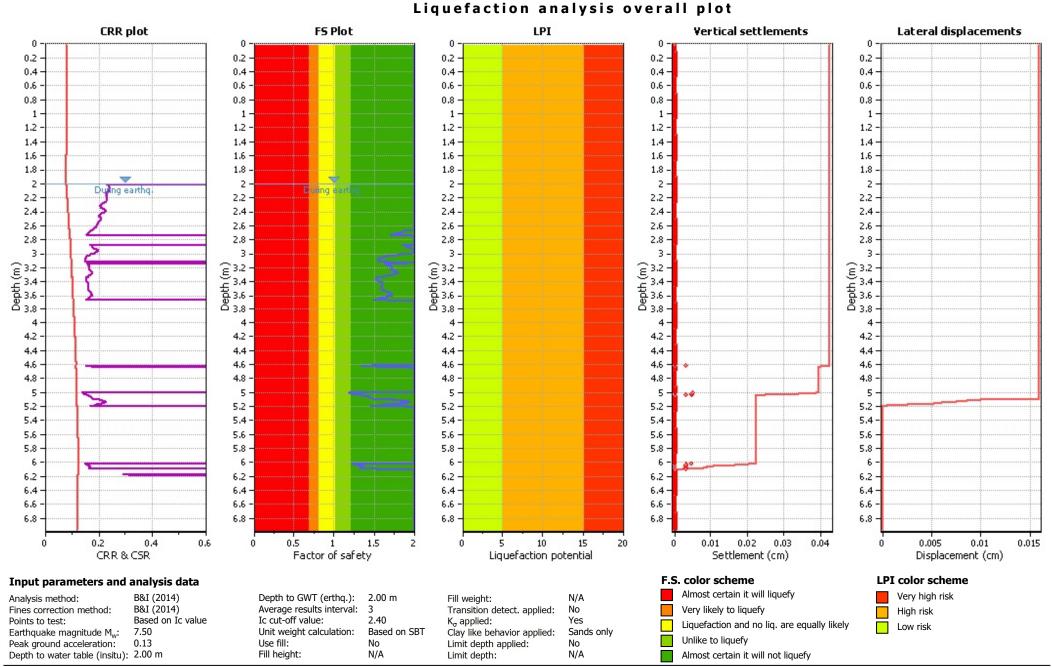
0


Analysis method:

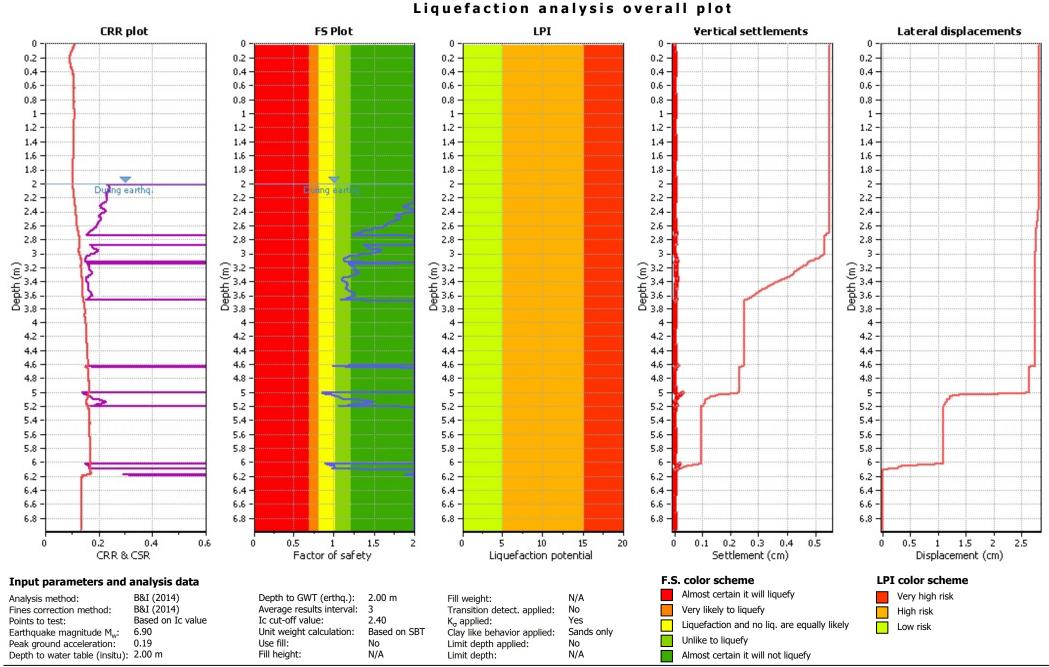
Points to test:



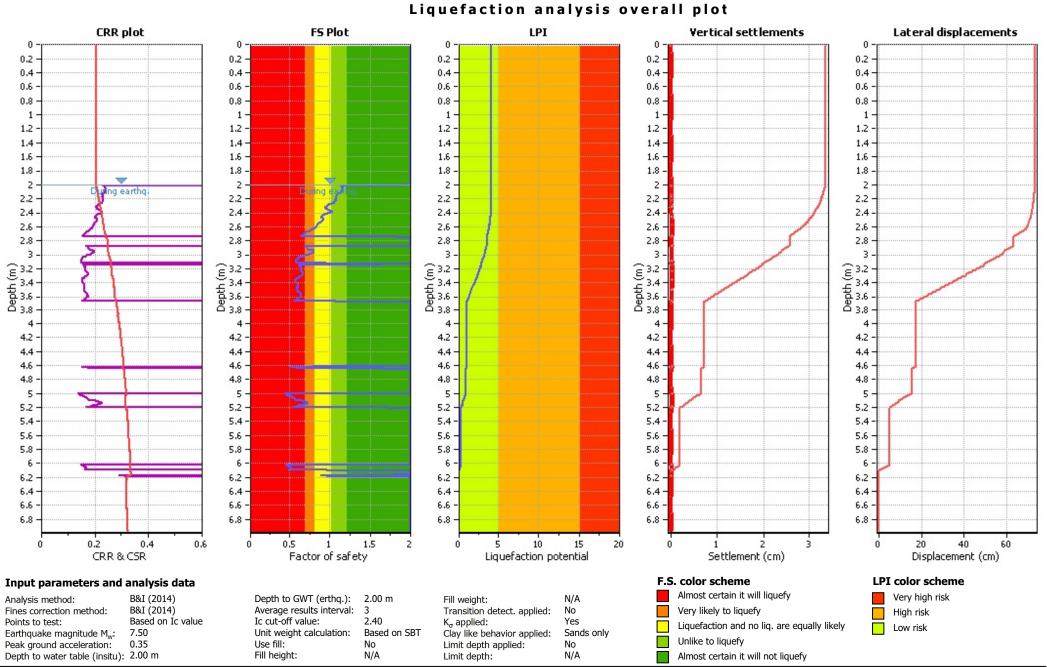

Liquefaction analysis overall plot


CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:27:35 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



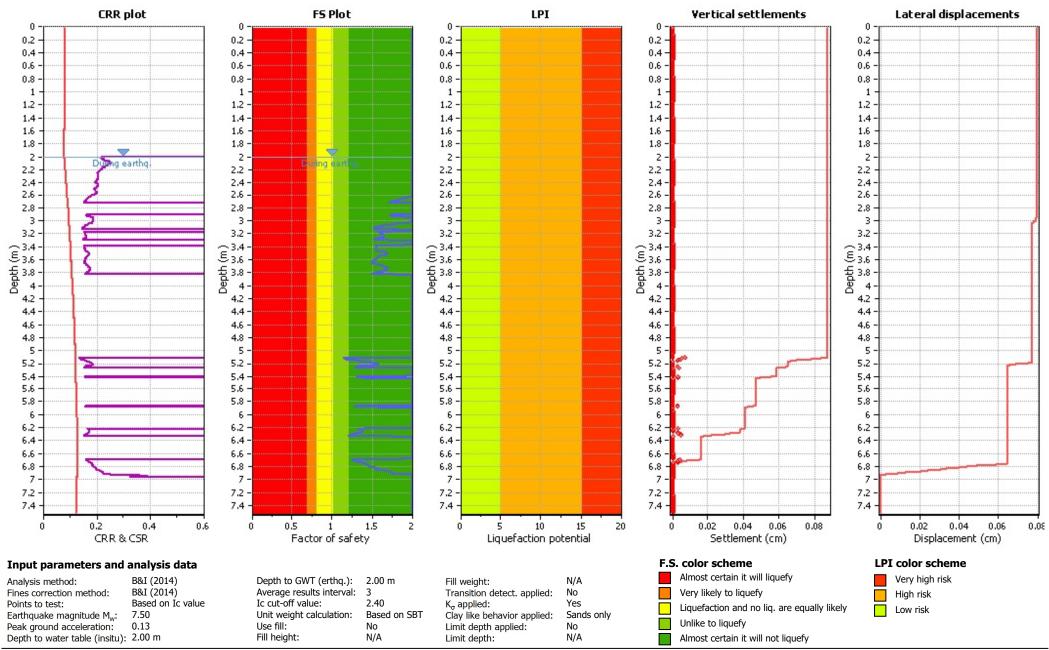

CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:28:29 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



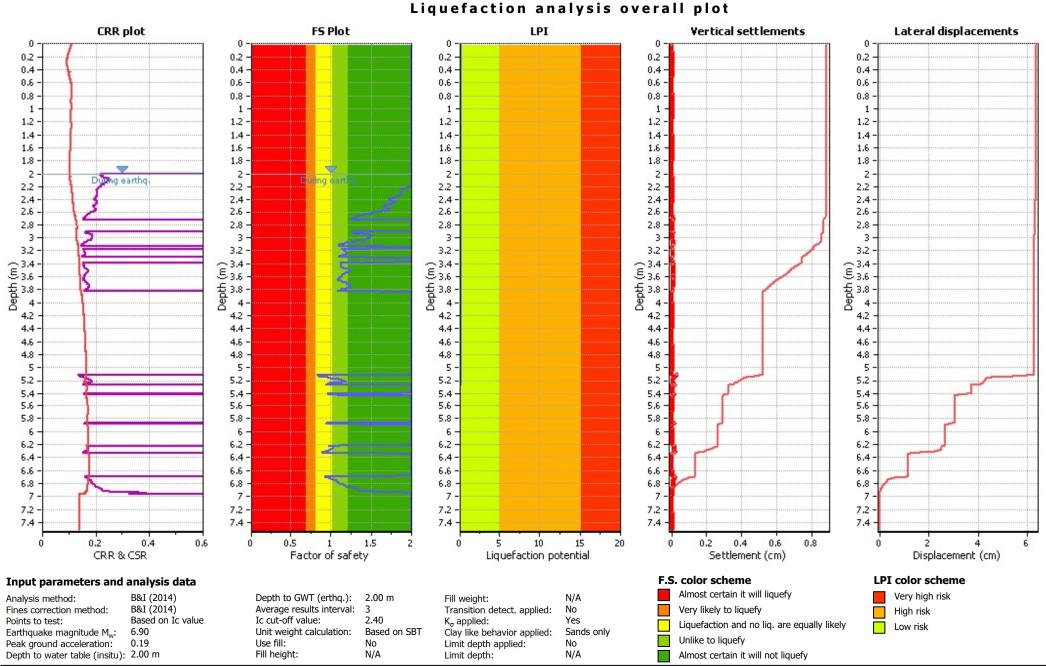

CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:29:05 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:30:07 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:40:46 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq




CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:41:20 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq

#### Liquefaction analysis overall plot



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:42:35 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:43:11 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3.2

Ξ<sup>3,4</sup> Ξ<sub>3,6</sub>

Depth 3'8 4

4.2

4.4

4.6

4.8

5.2

5.4

5.6

5.8

6.2

6.4

6.6

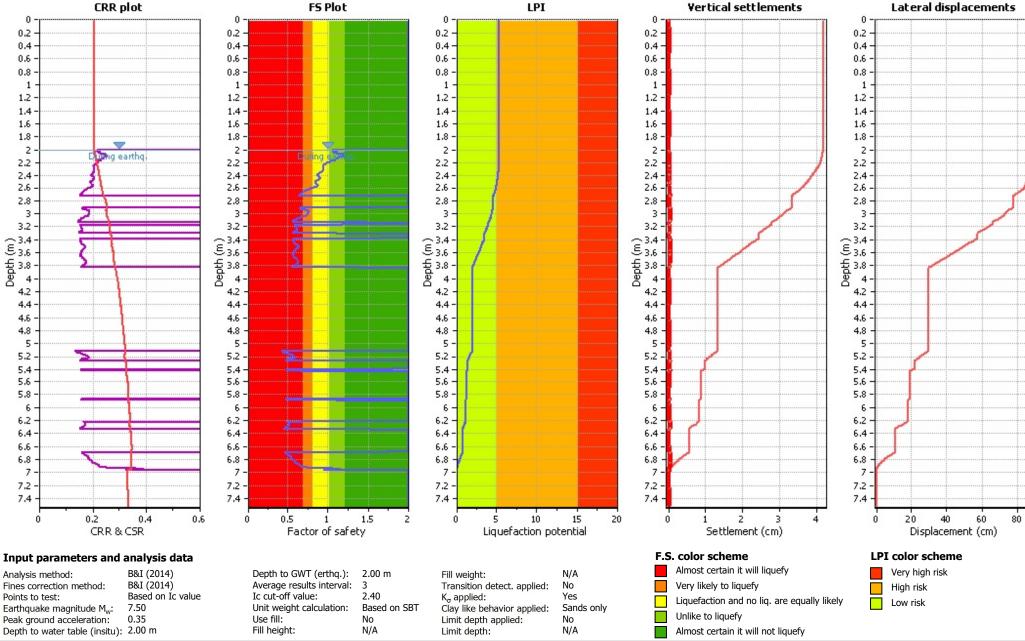
6.8

7.2

7.4

0

Analysis method:

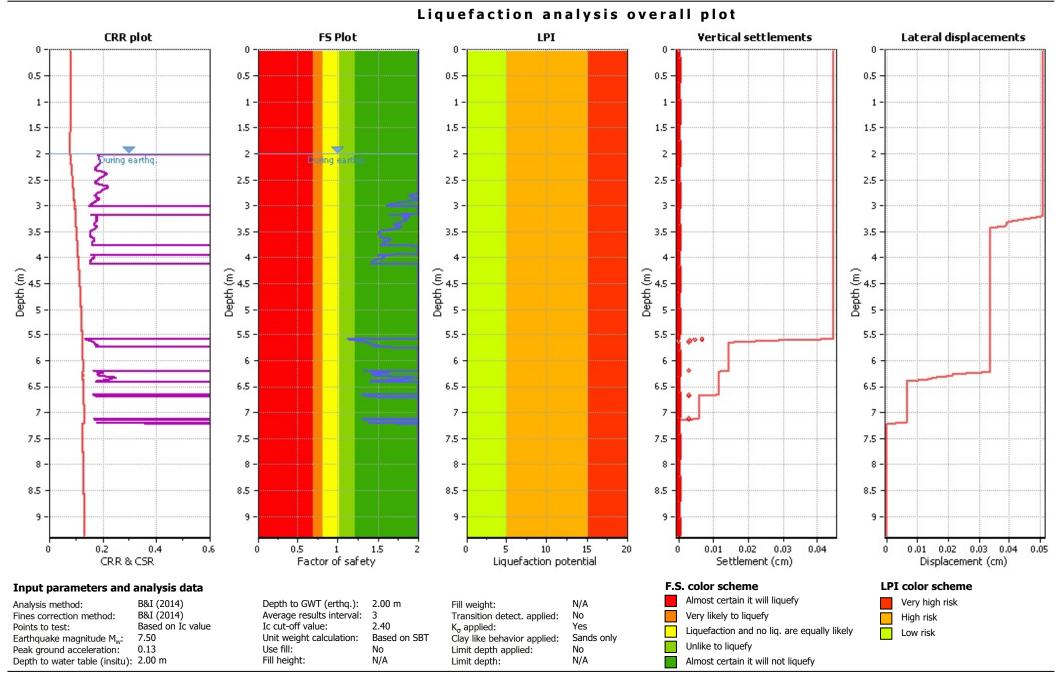

Points to test:

7

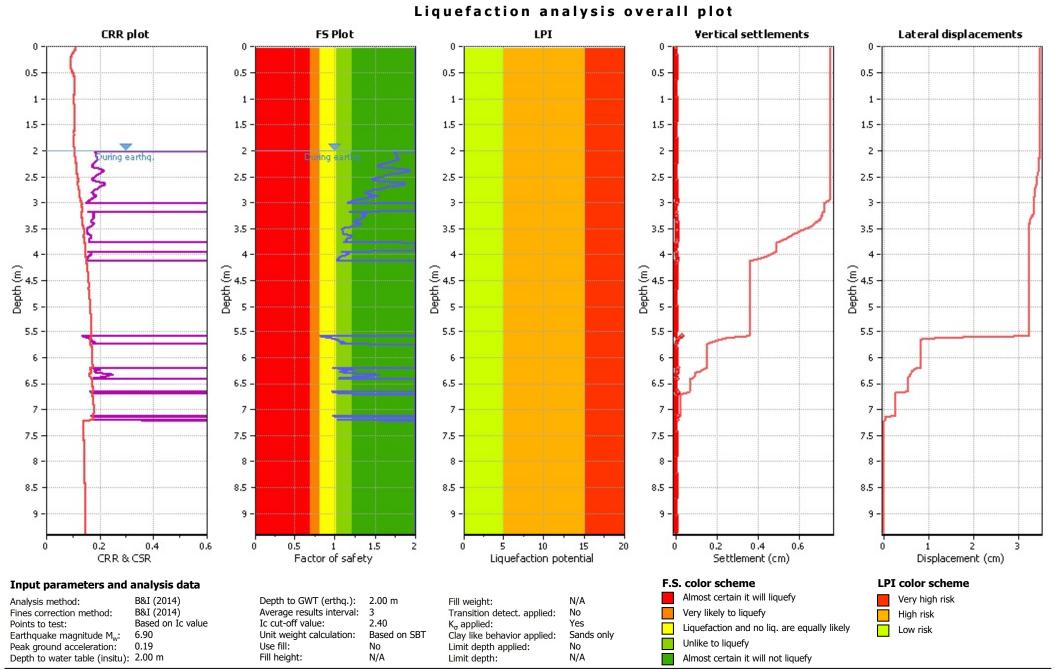
6

5

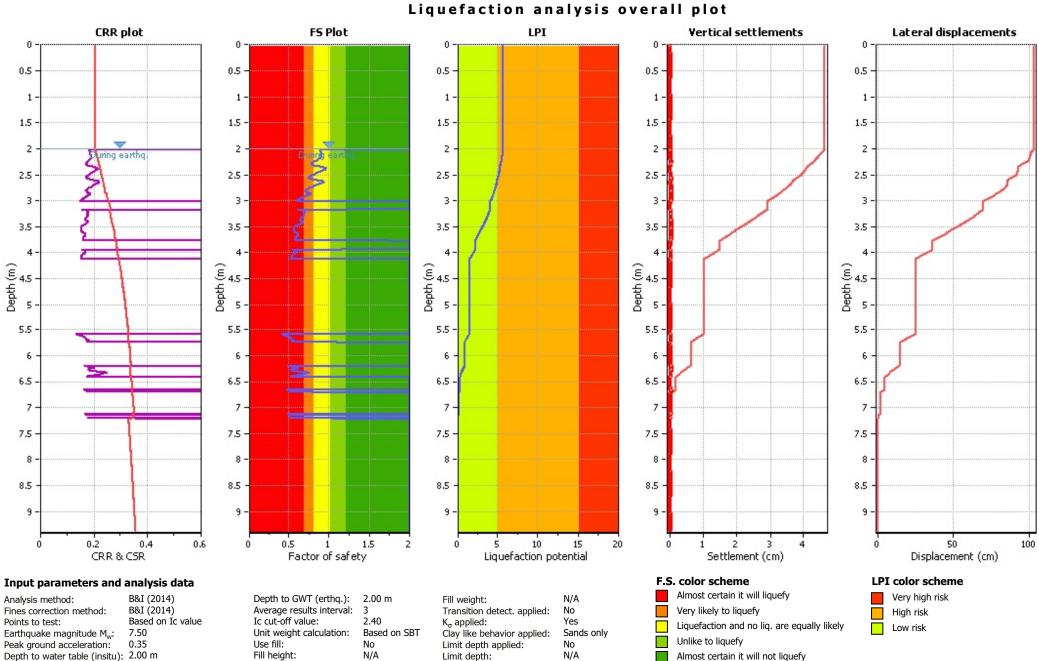
3




Liquefaction analysis overall plot


CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:43:43 PM

Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq


5



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:44:55 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:45:34 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq



CLiq v.2.2.0.28 - CPT Liquefaction Assessment Software - Report created on: 25/03/2019, 3:46:56 PM Project file: J:\Geotech Jobs - Working Folder\18594 - 115 Halswell Junction Road\CLiq Analysis.clq CPT name: CPTU006 ULS

5



**Appendix J: Statement of Professional Opinion** 

# Statement of Professional Opinion on the Suitability of Land for Subdivision

(Appendix I to the Infrastructure Design Standard)

**Issued by:** *CGW Consulting Engineers* (Geotechnical engineering firm or suitably qualified engineer)

To: Suburban Estates Limited (Owner/Developer)

To be supplied to: Christchurch City Council (Territorial authority)

In respect of: Proposed Residential Subdivision (Description of proposed infrastructure/land development)

At: 115 Halswell Juction Road, Halswell, Christchurch (Address)

l (Geotechnical engineer) Ferry Haryono on behalf of (Geotechnical engineering firm) CGW Consulting Engineers

hereby confirm:

- 1. I am a suitably qualified and experienced geotechnical engineer and was retained by the owner/developer as the geotechnical engineer on the above proposed development.
- 2. My/the geotechnical assessment report, dated 28 March 2019 has been carried out in accordance with the Department of Building and Housing Guidelines for geotechnical investigation and assessment of subdivisions and includes:
  - (i) Details of and the results of my/the site investigations.
  - (ii) A liquefaction assessment.
  - (iii) An assessment of rockfall and slippage, including hazards resulting from seismic activity.
  - (iv) An assessment of the slope stability and ground bearing capacity confirming the location and appropriateness of building sites.
  - (v) Recommendations proposing measures to avoid, remedy or mitigate any potential hazards on the land subject to the application, in accordance with the provisions of Section 106 of the Resource Management Act 1991.
- 3. In my professional opinion, I consider that Council is justified in granting consent incorporating the following conditions:

The original ground is suitable for the construction of a development/subdivision and is not subject to erosion, subsidence or slippage provided that the recommendations made in the CGW Consulting Engineers Geotechnical Investigation Report; Geotechnical Investigation Report, 115 Halswell Junction Road, Halswell, Christchurch; Suburban Estates Ltd; dated 28 March 2019 are followed.

4. This professional opinion is furnished to the territorial authority and the owner/developer for their purposes alone, on the express condition that it will not be relied upon by any other person and does not remove the necessity for the normal inspection of foundation conditions at the time of erection of any building.

- 5. This certificate shall be read in conjunction with my/the geotechnical report referred to in Clause 2 above, and shall not be copied or reproduced except in conjunction with the full geotechnical completion report.
- 6. The geotechnical engineering firm issuing this statement holds a current policy of professional indemnity insurance of no less than \$ 1 million dollars (Minimum amount of insurance shall be commensurate with the current amounts recommended by IPENZ, ACENZ, TNZ, INGENIUM.)

(Signature of Engineer)

Date: 28 March 2019

Qualifications and experience: CPEng, CMEngNZ, IntPE(NZ)